Exercícios Práticos

Obs.: Para todos os cálculos despreze o valor da incerteza.

Exercício 1

Calcule a exposição pessoal diário de um trabalhador ao ruído que está exposto durante 8h, sabendo que se deve à exposição à zona 1. A análise espectral do ruído da zona 1 é a seguinte:

	Frequências centrais em bandas de uma oitava (Hz)							
f(Hz)	63	125	250	500	1000	2000	4000	8000
Zona 1 Lf[dB]	73,4	74,5	76,3	75,0	75,0	73,2	72,0	69,8

Exercício 2

Sabendo que o operador da zona 1 do exercício anterior utiliza o protector auditivo indicado em baixo, determine o $L_{A,eq,efectivo}$, através do método de banda de oitava.

3M 1261	Frequências centrais em bandas de uma oitava (Hz)							
f(Hz)	63	125	250	500	1000	2000	4000	8000
mf[dB]	26,6	27,7	28,4	29,5	29,6	35,6	35,4	38,9
<u>şf</u> [dB]	9,4	9,9	10,9	9,6	8,2	6,8	9,6	6,7

Exercício 3

Os operadores de uma fundição estão expostos a um ambiente cujos níveis de ruído se distribuem durante as 5 horas de trabalho, do seguinte modo:

Nível sonoro [dB(A)]	82,3	91,5	98,2	
Duração (horas)	1,0	0,5	3,5	

Calcule o nível sonoro contínuo equivalente desse ruído.

RUÍDO OCUPACIONAL

Exercícios Práticos

Exercício 4

Sabendo que o operador utiliza o protector auditivo indicado em baixo, determine o $\boldsymbol{L}_{A,eq,efectivo,}$

através do método de banda de oitava, do método HML e SNR.

Dados do protector:

	f(Hz)	63	125	250	500	1000	2000	4000	8000	
	mf[dB]	33,4	3,1	35,5	37,6	34,9	35,7	42,5	44,1	
	sf[dB]	4,6	4,7	4,6	4,1	5,0	2,8	2,9	4,2	
1	SNR= 35 M=34 H=32 e L=31									

Formulário Ruído

- LAeq POR FREQUÊNCIA

$$L_{Aeq} = 10 \times log \left[\sum_{f} 10^{0.1x(L_{A,f})} \right]$$

- LAeq POR TEMPOS PARCIAIS

$$L_{Aeq} = 10 \times log \left[\frac{1}{T} \sum_{i} t_{i} \times 10^{0.1x(L_{A,i})} \right]$$

- EXPOSIÇÃO DIÁRIA

$$L_{\text{EX,8h}} = L_{\text{A,eq}} + 10 \times log \left(\frac{t_e}{t_0}\right)$$

- ATENUAÇÃO DE PROTECTORES
- 1. Método de Banda de Oitava:

$$L_{\text{Aeq, efectivo}} = 10 \times log \left(\sum_{\text{f=63}}^{8000} 10^{0.1 \times (L_{\text{A,f}} - m_{\text{f}} + 2 \times s_{\text{f}})} \right)$$

- 2. Método HML
- (Lc-L_A) ≤ 2 dB :

$$PNR = M - \frac{H - M}{4}(L_c - L_A - 2)dB$$

- (L_c-L_A) > 2 dB:

$$PNR = M - \frac{M - L}{8} (L_c - L_A - 2) dB$$

$$\mathsf{L}_{\mathsf{Aeq},\mathsf{efectivo}} = \mathsf{L}_{\mathsf{A}} - \mathsf{PNR}$$

3. Método SNR

$$L_{Aeq.efectivo} = L_{C} - SNR$$

FILTROS DE PONDERAÇÃO

F (Hz)	63	125	250	500	1000	2000	4000	8000
		- 16,1						
"C"	- 0,8	- 0,2	0	0	0	- 0,2	-0,8	- 3,0