
- Princípios e serviços da camada de transporte
- Protocolos de transporte : TCP e UDP

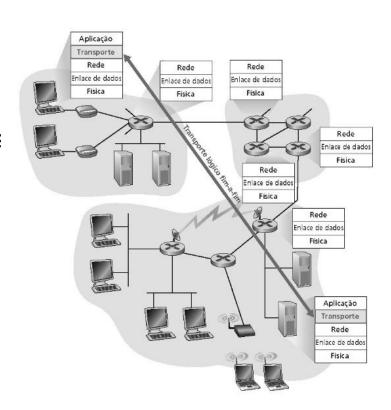
## Camada de Transporte



# Protocolos e serviços da camada de transporte

- Entender os princípios por trás dos serviços da camada de transporte:
  - Multiplexação/demultiplexação
  - Transferência de dados confiável
  - Controle de fluxo
  - Controle de congestionamento
- Protocolos de transporte na Internet:
  - UDP: transporte n\u00e3o orientado \u00e0 conex\u00e3o
  - TCP: transporte orientado à conexão
  - Controle de congestionamento do TCP

# Serviços da Camada de Transporte


- Multiplexação e demultiplexação
- Transporte não orientado à conexão: UDP
- Princípios de transferência confiável de dados
- Transporte orientado à conexão: TCP
- Estrutura do segmento
- Transferência confiável de dados
- Controle de fluxo
- Gestão de conexão
- Princípios de controle de congestionamento
- Controle de congestionamento do TCP

## Camada de Transporte

- A camada de transporte serve para verificar se a informação foi entregue sem erros ao destinatário. Para isso, a informação que é composta por um grande segmento de dados é dividida em pequenos segmentos que são agrupados novamente quando chegam ao destino passando-se o inverso.
- Esta camada permite ainda efetuara resolução de nomes de computadores em endereços, ou seja, podemos saber o nome de um computador através do seu endereço de IP e vice-versa

# Serviços da camada de transporte

- Fornecem comunicação lógica entre processos de aplicação em diferentes hospedeiros
- Os protocolos de transporte são executados nos sistemas finais
- Lado emissor: divide as mensagens da aplicação em segmentos e envia para a camada de rede
- Lado recetor: restaura os segmentos em mensagens e passa para a camada de aplicação



# Protocolos da camada de transporte

- A camada de transporte no modelo TCP/IP realiza a transferência de dados entre os extremos da comunicação.
- No lado emissor, os dados recebidos da camada de aplicação são divididos em segmentos antes de serem transmitidos.
- No lado recetor, os segmentos são reagrupados e entregues à camada de aplicação.
- Os protocolos usados são:
  - TCP transmission control protocol
  - UDP user datagram Protocol

## Camada de transporte vs. camada de rede

- Camada de rede: comunicação lógica entre os hosts
- Camada de transporte: comunicação lógica entre os processos.
  - Depende dos serviços da camada de rede

## Correção de erros de controlo

- Para existir correção de erros e controlo sobre o fluxo de informação são utilizados dois serviços de ligação:
  - Ligação orientada à conexão (connection oriented)
  - Ligação livre ou não orientada à conexão (connectionless)

## Controlo de fluxo com janela

- Considerando que na camada de rede o IP não oferece qualquer garantia de entrega dos datagramas, cabe ao protocolo TCP administrar os temporizadores e retransmitir os datagramas sempre que necessário.
- Os datagramas também podem chegar fora de ordem e cabe ao TCP reorganizálos em mensagens na sequência correta, fornecendo a confiabilidade que o IP não oferece.
- O TCP é um protocolo orientado à conexão que permite a entrega sem erros de um fluxo de bytes originados de uma determinada máquina para qualquer outra máquina da inter-rede.
- Esse protocolo atua na camada de transporte oferecendo um serviço de transferência de bytes fim a fim, de modo confiável, em uma inter-rede não-confiável.
- O protocolo básico utilizado pelas entidades TCP é o protocolo de janelas deslizantes usado para manter um registro do quadro de sequências enviadas e os respetivos reconhecimentos recebidos pelos utilizadores.
- Nas transmissões com controle de fluxo, temos uma janela de duração variável, a qual permite que um remetente possa transmitir determinado número de unidades de dados antes que uma confirmação seja recebida ou que um evento especificado ocorra. Consequentemente, o objetivo da janela deslizante é aumentar a taxa de transferência de pacotes melhorando a utilização do meio de transmissão.

# TCP é constituído pelos campos seguintes:

Porto de origem - Número do porto da aplicação que enviou os dados;

**Porto de destino** - Número do porto da aplicação a que se destinam os dados;

**Número de sequência** - Número de sequência do primeiro *byte* dos dados do segmento;

**Número de confirmação** - Número de sequência do próximo *byte* que o recetor espera receber;

**Tamanho do cabeçalho** - Tamanho do cabeçalho em palavras de 32 *bits.* É usado para onde começam os dados;

Reservado - Campo reservado para uso futuro. É colocado a 0;

Bits de controlo -Bits usados no controlo e gestão da sessão:

# TCP é constituído pelos campos seguintes:

Bits de controlo -Bits usados no controlo e gestão da sessão:

- URG Quando activo, indica que os dados são prioritários. Os dados prioritários são processados em primeiro lugar;
- ACK Quando activo, indica que o número do campo de confirmação é válido;
- PSH Quando activo, indica ao receptor que os dados não prioritários devem ser entregues imediatamente à aplicação para processamento;
- **RST** Ouando activo, reinicializa a sessão:
- SYN Usado para estabelecer uma sessão;
- FIN Quando activo, indica que são os últimos dados recebidos.

Janela - Tamanho em bytes da janela usada no protocolo de controlo de fluxo;

**Verificação de erros** - Código CRC de verificação de erros. O código incide sobre Cabeçalho e os dados;

**Indicador de prioridade** - Indica qual o último *byt*e numa sequência de dados prioritários. Assim, o recetor sabe o volume de dados prioritários que vai receber;

Opções - Permite indicar parâmetros de controlo. Por exemplo, o tamanho máximo de -~ segmento.

## Transferência de Dados e Partilha de Ligação

O protocolo TCP garante a transferência de dados entre aplicações.

A aplicação do emissor gera os dados e envia-os para o TCP juntamente com o endereço lógico e a identificação da aplicação a quem se destinam os dados.

As aplicações são identificadas com um número designado de **porto.** 

O conjunto formado pelo **número do porto**, pelo **endereço destino** e pelo nome do **protocolo de transporte** que deve ser usado na transmissão designa-se por **SOCKET**.

Numa comunicação de dados, existe um socket origem e um socket destino

### Sockets

A definição correta dos sockets é fundamental para a partilha de uma ligação por várias aplicações. Exemplo:

- Admitindo que uma organização tem um servidor que responde a pedidos FTP e HTTP. Se um determinado cliente aceder ao servidor para realizar uma transferência FTP e outra HTTP, irá usar o mesmo endereço lógico do servidor, mas o número dos portos será diferente. Só assim é possível saber a que aplicação se destina um determinado pedido de um cliente.
- Se por outro lado, existirem dois clientes em máquinas diferentes a acederem ao mesmo servidor FTP, o servidor consegue distinguir os pedidos através do endereço lógico dos clientes e através dos portos das aplicações dos clientes que realizaram o pedido FTP.
- Se os pedidos viessem da mesma máquina, a forma única de os distinguir seria através dos números dos portos origem, uma vez que o endereços lógicos de destino e origem seriam os mesmos.

### Portos

- Os porto desempenham um papel fundamental para que as aplicações diferentes partilhem a mesma ligação TCP.
- A atribuição de portos às aplicações de servidores obedece a um mapeamento predefinido.
- As conversações que não envolvem uma aplicação com número de porto conhecido recebem números de porto aleatórios num intervalo específico acima de 1023.
- Alguns portos são reservadas no TCP e no UDP, embora possa haver aplicações que não os suportem. Os números de portos têm os seguintes intervalos atribuídos:
- Números abaixo de 1024 são considerados números de portos conhecidos, aplicações de servidor.
- Números acima de 1023 recebem números de porto atribuídos dinamicamente.
- Números de porto registados são aqueles registados para aplicações específicas de fabricantes. A maioria desses números é superior a 1024.

### Portos Lógicos

■ Numa máquina existem 65.536 portos TCP e 65.536 UDP que podem ser usadas pelas mais diversas aplicações/serviços, o que (teoricamente) poderíamos ter 65.536 aplicações/serviços distintos a correr em simultâneo na nossa máquina.

Mas como saber quais o portos abertos num PC

### **TCPView**

- O <u>TCPView</u> é um programa do Windows que mostra listagens detalhadas de todos os pontos de extremidade TCP e UDP no seu sistema, incluindo os endereços locais e remotos e o estado das conexões TCP.
- Usar a linha de comandos para saber quais os portos abertos
  - Para saber todas as ligações TCP e UDP estabelecidas entre a nossa máquina e outras basta que use o comando:

netstat -a

## Correção de erros de controlo

#### Ligação orientada (connection - oriented)

- No caso da ligação orientada, a mesma vai utilizar serviços que permitem a ligação e verificação de erros entre os dispositivos emissor e recetor e manter a ligação de forma a que não seja necessário voltar a repetir o envio da informação.
- Esta manutenção é feita por segmentos de informação designados de ACKs ou acknowledgments. O protocolo usado é o TCP

## Correção de erros de controlo

#### Ligação livre - (connectionless)

- O serviço connectionless não possui verificação e correção de erros nem controlo sobre o fluxo de informação
- Por outro lado, é muito mais rápido transmitir a informação
- Se houver perda de alguma parte da informação é necessário repetir o envio de todo o conteúdo
- Nesta situações é usado o protocolo UDP User Datagram Protocol

### Protocolo UDP

O UDP é um protocolo mais simples e por si só não fornece garantia na entrega dos pacotes. No entanto, esse processo de garantia de dados pode ser simplesmente realizado pela aplicação em si (que usa o protocolo UDP) e não pelo protocolo.

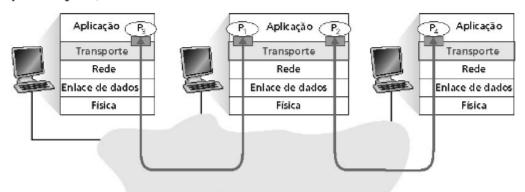
 Os protocolos, como o TFTP e o NFS, necessitam de velocidade na transferência de dados, utilizam o protocolo UDP

## Portas TCP/UDP

- Numa máquina existem (teoricamente) 65.536 portas TCP que podem ser usadas pelas mais diversas aplicações/serviços, o que (teoricamente) poderíamos ter 65.536 aplicações/serviços distintos a correr em simultâneo na nossa máquina.
- Relembrando: o IP identifica a máquina e o porto identifica a aplicação/serviço. Além das portas TCP também existem 65.536 portas UDP(teoricamente).

**Portas** 

## TCP/UDP?


#### Aplicação prática

A escolha entre o uso do protocolo TCP ou UDP cabe ao desenvolvedor de cada aplicação, que deve decidir o que ela precisa. Embora muitos prefiram a segurança e confiabilidade oferecidas pelo TCP, outros se beneficiam mais optando pela velocidade de transmissão gerada pelo UDP

## Multiplexação/demultiplexação

coleta dados de múltiplos sockets, entreg envelopa os dados com cabeçalho recebi (usado depois para demultiplexação)

entrega os segmentos recebidos ao socket correto



### Síntese

#### Protocolos da camada de transporte



#### **TCP**

Conexão confiável utilizada para controlar o gerenciamento das aplicações a nível de serviços entre computadores. Faz tanto o transporte em sequência do dado quanto a checagem da integridade dos mesmos.

#### **UDP**

Conexão não confiável utilizada para controlar o gerenciamento das aplicações a nível de serviços entre computadores e é utilizado para o transporte de algum dados onde a própria aplicação faz a verificação da integridade dos dados;

#### **ICMP**

Internet control message protocol - fornece a gestão e o relatório de erros para ajudar no gerenciamento de dados durante a comunicação entre computadores. Esta conexão é utilizada para reportar o status do computador que está sendo conectado ao computador que está tentando conectar como por exemplo reportar que o computador de destino não está acessível.

#### **IGMP**

Internet Group Management Protocol utilizado para suportar mensagens multicasting e rastrear grupos de utilizadores na rede de computadores.

### Referências

- https://www.citisystems.com.br/protocolo-tcp-ip/
- <u>https://docplayer.com.br/3825192-Redes-de-computadores-e-a-internet-capitulo3-camada-de-transporte.html</u>