

Responsive Web Design with
HTML5 and CSS3

Learn responsive design using HTML5 and CSS3
to adapt websites to any browser or screen size

Ben Frain

BIRMINGHAM - MUMBAI

Responsive Web Design with HTML5 and CSS3

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012

Production Reference: 1020412

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-318-9

www.packtpub.com

Cover Image by J. Blaminsky (jarek@jblaminsky.com)

Credits

Author
Ben Frain

Reviewers
Ed Henderson

Mauvis Ledford

KJAMAN

Acquisition Editor
Robin de Jongh

Lead Technical Editor
Joanna Finchen

Technical Editors
Vrinda Amberkar

Vanjeet D'souza

Sonali Tharwani

Project Coordinator
Kushal Bhardwaj

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Ben Frain has been a freelance frontend web designer/developer for over a decade,
working directly with clients and alongside design agencies worldwide. He also
works as a technology journalist, contributing regularly to a number of diverse
publications on the Mac platform, future technology, website design and technology
systems in the Aviation industry.

Before that, he worked as an underrated (and modest) TV Actor, having graduated
from Salford University with a degree in Media and Performance. He has written
four equally underrated (his opinion) screenplays and still harbors the (fading) belief
he might sell one. Outside of work, he enjoys playing indoor football whilst his body
(and wife) still allow it.

Visit him online at www.benfrain.com and follow him on Twitter at
twitter.com/benfrain.

Thanks first and foremost to the web community. Without their
combined brilliance and generosity in documenting and sharing
solutions I wouldn't be able to make things I'm even slightly proud
of on the Web.

Next, I'd like to thank the father of responsive web design:
Ethan Marcotte. A man I've never met or spoken to but whose
methodology now affects the way I build websites on a day-to-day
basis. It goes without saying that any imperfections or errors in the
way I have presented responsive methodology are entirely mine.

Finally, thanks to my family. Anyone who's watched the (also
underrated) Wyatt Earp, already knows, "Nothing counts so much as
blood. The rest are just strangers."

http://www.benfrain.com

About the Reviewers

Ed Henderson is an experienced Web Developer with a love for designing and
building things online.

Not afraid to get his hands dirty and his feet wet, he is open to most technologies as
long as they are useful and fun.

Ed has a degree in Computer Science and runs his own business (Web Man
Walking). He has worked freelance, permanent and contracted, and has a vast
understanding of all aspects of the industry, from web pages to web apps and
social media.

Ed thrives on coming up with fresh ideas. He has been a Programmer, Software
Developer, and is now a Web Superhero who likes nothing more than tinkering
with all things shiny, fluffy, and fuzzy. Making a difference and turning an idea
into a useful, working thing are what floats Ed's boat.

You may not know that Ed is the Dad from Jack Draws Anything,
http://jackdrawsanything.com/ and winner of the prestigious .net Social
Campaign of the Year 2011 award.

Ed lives in Upper Cockenzie, East Lothian, Scotland with the rest of Team Hendo;
his amazing wife, Rose and sidekicks, Jack, Toby, and Noah.

You can follow Ed over at http://edhenderson.com (always a work in progress,
so excuse the mess) or on Twitter, @edhenderson.

Mauvis Ledford is a full-stack Web Developer specializing in frontend
architecture. He's been working actively in this field for the past 9 years, the
last two concentrating on the Mobile Web and HTML5.

He runs his own HTML5 web consultancy, specializing in responsive design and
write-once deploy everywhere web applications at http://www.brainswap.me. He
has worked or was contracted for Disney Mobile, Skype, Netflix, and many startups
in the San Francisco Bay area.

http://jackdrawsanything.com/
http://edhenderson.com
http://www.brainswap.me

Kamrujaman Shohel has 6 years of experience as a Frontend Engineer and is an
expert in multiple areas. He has a strong background as a User Interface/Frontend
Engineer, UX Designer, UI Specialist, and Usability Consultant. After graduating
in 2004, he started his career as a PHP Developer with SSR IT, before working with
Multimode Group (Microsoft Department) as an Analyst. He has always liked
frontend development, because he can visually apply his creativity there; this is
the reason why he changed his career path in January 2005 to become a successful
Frontend Developer. Since then, he has worked with Right Brain Solution Limited,
as a Senior Frontend Developer. He has excellent expertise on HTML, HTML5,
CSS3, jQuery, jQuery UI, PHP, Photoshop CS5, Photoshop CS5, and Illustrator
CS5. For the last two years, he has been working with Trenza Softwares, as a Senior
Frontend Engineer (Team Lead), has also been working with Mesovison Consultancy
Limited as an IT Consultant, and has been a part-time Freelance Developer. He likes
to research interface design, interactivity, user compatibility and comprehensive
usability and high end web application functionality. This year, he plans to start
writing a book on HTML5, CSS3, jQuery, jQuery Mobile, or jQuery UI. His vision is
to establish his own company and a foundation where people will help each other
develop their talents.

Unless he is asleep, he is always working. Outside of his work he keeps himself
up-to-date by reading technical books and researching frontend engineering.
He has excellent knowledge of PHP, C, C#, VB.NET, ASP.NET, CakePHP, Zend
Framework, Drupal, Joomla, and WordPress. Though he is a Frontend Engineer,
he believes practice makes a man perfect, so he always keeps himself updated with
new technologies.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Getting Started with HTML5, CSS3,
and Responsive Web Design	 7

Why smart phones are important (and old IE isn't)	 8
Are there times when a responsive design isn't the right choice?	 10
Defining responsive web design	 10
Why stop at responsive design?	 11
Examples of responsive web design	 11

Get your viewport testing tools here!	 12
Online sources of inspiration	 21

HTML5—why it's so good	 22
Saving time and code with HTML5	 22
New, semantically meaningful HTML5 tag elements	 23

CSS3 enables responsive designs and more	 24
The bottom line—CSS3 won't break anything!	 25
How can CSS3 solve everyday design problems?	 25

Look Ma'—no images!	 28
What else has CSS3 got to offer?	 29

Can HTML5 and CSS3 work for us today?	 31
Responsive web designs are not magic bullets	 33
Educating our clients that websites shouldn't look the
same in all browsers	 33
Summary	 34

Chapter 2: Media Queries: Supporting Differing Viewports	 35
You can use media queries today	 35
Why responsive designs need media queries?	 36

Media query syntax	 36
What can media queries test for?	 39

Table of Contents

[ii]

Using media queries to alter our design	 40
The best way to load media queries for responsive designs	 41

Our first responsive design	 41
Don't panic but our design is fixed-width	 42
Responsive designs—making images as economical as possible	 46
Content clipping in smaller viewports	 48

Stopping modern mobile browsers from auto-resizing the page	 50
Fixing the design for different viewport widths	 53
With responsive designs, content should always come first	 54
Media queries—only part of the solution	 59

We need a fluid layout	 59
Summary	 60

Chapter 3: Embracing Fluid Layouts	 61
Fixed layouts aren't future proof	 62
Why proportional layouts are essential for responsive designs	 62
Amending a design from fixed to proportional layout	 63

A formula to remember	 63
Setting a context for proportional elements	 66
It's always important to remember the context	 72

Using ems rather than pixels for typography	 75
Fluid images	 77

Making images scale with the viewport	 77
Specific rules for specific images	 79
Putting the brakes on fluid images	 81
The incredibly versatile max-width property	 82

Serving different images for different screen sizes	 83
Setting up Adaptive Images	 84

Put background images somewhere else	 86
Where fluid grids and media queries come together	 89
CSS Grid systems	 89

Rapidly building our site with a Grid system	 90
Summary	 96

Chapter 4: HTML5 for Responsive Designs	 97
What parts of HTML5 can we use today?	 98

Most sites can be written in HTML5	 98
Polyfills, shims, and Modernizr	 98

How to write HTML5 pages	 99
Economies of using HTML5	 101
A sensible approach to HTML5 markup	 102
All hail the mighty <a> tag	 102

Table of Contents

[iii]

Obsolete HTML features	 103
New semantic elements in HTML5	 103

The <section> element	 104
The <nav> element	 105
The <article> element	 105
The <aside> element	 105
The <hgroup> element	 106

The HTML5 outline algorithm	 106
The <header> element	 108
The <footer> element	 108
The <address> element	 109

Practical usage of HTML5's structural elements	 109
What about the main content of the site?	 116

HTML5 text-level semantics	 117
The element	 117
The element	 117
The <i> element	 117
Applying text-level semantics to our markup	 118

Adding accessibility to your site with WAI-ARIA	 119
ARIA's landmark roles	 120

Embedding media in HTML5	 123
Adding video and audio the HTML5 way	 123

Providing alternate source files	 125
Fallback for older browsers	 126
Audio and video tags work almost identically	 126

Responsive video	 126
Offline Web applications	 131

Offline Web applications in a nut shell	 131
Making web pages work offline	 131
Understanding the manifest file	 133
Automatic loading of pages to the offline manifest	 133
About that version comment	 134
Viewing the site offline	 134
Troubleshooting Offline Web applications	 135

Summary	 136
Chapter 5: CSS3: Selectors, Typography, and Color Modes	 137

What CSS3 offers the frontend developer	 138
CSS3 support in Internet Explorer versions 6 to 8	 138
Using CSS3 to design and develop pages in the browser	 139

Table of Contents

[iv]

Anatomy of a CSS rule	 139
Vendor prefixes and how to use them	 139
Quick and useful CSS3 tricks	 142

CSS3 multiple columns for responsive designs	 142
Adding a gap and column divider	 144

Word wrapping	 145
New CSS3 selectors and how to use them	 146

CSS3 attribute selectors	 146
CSS3 substring matching attribute selectors	 147
A practical, real world example	 148

CSS3 structural pseudo-classes	 149
The :last-child selector	 150
The nth-child selectors	 154
Understanding what nth rules do	 155
The negation (:not) selector	 158

Amendments to pseudo-elements	 159
Is :first-line handy for responsive designs?	 159

Custom web typography	 161
The @font-face CSS rule	 161
Implementing web fonts with @font-face	 162

Help—my CSS3 @font-face headings look messy	 166
A note about custom @font-face typography and responsive designs	 168

New CSS3 color formats and alpha transparency	 169
RGB color	 169
HSL color	 170
Fallback color values for IE6, IE7, and IE8	 172
Alpha channels	 172

Summary	 174
Chapter 6: Stunning Aesthetics with CSS3	 175

Text shadows with CSS3	 176
HEX, HSL, or RGB color allowed	 176
Pixels, em, or rem	 177
Preventing a text shadow	 178

Left and top shadows	 180
Creating an embossed text-shadow effect	 180
Multiple text-shadows	 181

Box shadows	 181
Inset shadow	 182
Multiple shadows	 184

Background gradients	 185
Linear background gradients	 185

Breakdown of linear gradient syntax	 188

Table of Contents

[v]

Radial background gradients	 189
Breakdown of radial gradient syntax	 190

Repeating gradients	 192
Background gradient patterns	 194
Responsive considerations for CSS3	 196
Bringing CSS3 properties together	 198
Multiple background images	 203

Background size	 204
Background position	 205
Background shorthand	 205

More CSS3 features	 205
Sizeable icons which are perfect for responsive designs	 206
Summary	 207

Chapter 7: CSS3 Transitions, Transformations, and Animations	 209
What CSS3 transitions are and how we can use them	 210

The properties of a transition	 212
The transition shorthand property	 212
Transition different properties over different periods of time	 213
Understanding timing functions	 214

Fun transitions for responsive web sites	 215
CSS3 2D transformations	 216

What can we transform?	 217
scale	 217
translate	 217
rotate	 218
skew	 218
matrix	 219
transform-origin property	 221

Dabbling in CSS3 3D transformations 	 221
Breaking down the 3D effect	 224
3D transformations not ready for prime time	 227

Animating with CSS3	 228
Putting CSS3 transformations and animations together	 232

Summary	 236
Chapter 8: Conquer Forms with HTML5 and CSS3	 237

HTML5 forms	 238
Understanding the component parts of HTML5 forms	 240
placeholder	 241
required	 241
autofocus	 243
autocomplete	 243
list (and the associated datalist element)	 244

Table of Contents

[vi]

HTML5 input types	 245
email	 245
number	 246
url	 247
tel	 248
search	 250
pattern	 250
color	 251

Date and time inputs	 252
date	 252
month	 253
week	 253
time	 254
datetime and datetime-local	 254
range 	 256

How to polyfill non-supporting browsers	 258
Styling HTML5 forms with CSS3	 259

Form-specific CSS3 pseudo class selectors	 265
Summary	 267

Chapter 9: Solving Cross-browser Responsive Challenges	 269
Progressive enhancement versus graceful degradation	 274

Reality	 274
Should you fix old versions of Internet Explorer?	 275

Statistics (again)	 276
Personal choice	 276

Modernizr—the frontend developer's Swiss army knife	 277
Fix styling issues with Modernizr	 279
Modernizr adds HTML5 element support for old IE	 282
Add min/max media query capability for Internet Explorer 6, 7, and 8	 283
Conditional loading with Modernizr	 285

Changing navigation links to a drop menu (conditionally)	 287
High resolution devices (the future)	 292
Summary	 295

Index	 297

Preface
If you think you need to create a "mobile" version of your website—think again!
A responsive web design provides one design that looks great on smart phone,
desktop, and everything in-between. It will effortlessly respond to the size of
the user's screen, providing the best experience possible for both today's and
tomorrow's devices.

This book provides a complete "how-to" of taking an existing fixed width design
and making it responsive. Furthermore, it extends responsive design methodology
by applying the latest and most useful techniques provided by HTML5 and CSS3,
making the design leaner and more maintainable than ever before. It also explains
common best-practice methods of writing and delivering code, images, and files.

If you can understand HTML and CSS, you can build a responsive web design.

What this book covers
Chapter 1, Getting Started with HTML5, CSS3, and Responsive Web Design, defines what
responsive web design is, provides examples of responsive designs, and highlights
the benefits and economies of using HTML5 and CSS3.

Chapter 2, Media Queries: Supporting Differing Viewports, explains what media queries
are, how to write them, and how they can be applied to any design to adapt the CSS
styles for a device's capabilities.

Chapter 3, Embracing Fluid Layouts, explains the benefits of a fluid layout and shows
how to easily convert a current fixed-width design to a fluid layout or use a CSS
framework to rapidly prototype a responsive design.

Chapter 4, HTML5 for Responsive Designs, explores the many benefits of coding
with HTML5 (leaner code, semantic elements, offline caching, and WAI-ARIA
for assistive technologies).

Preface

[2]

Chapter 5, CSS3: Selectors, Typography, and Color Modes, demonstrates the power of
CSS3 selectors, allowing you to target and transform anything with ease. We also use
CSS3 @font-face rules to create beautiful web typography and explain new CSS3
color modes such as RGB(A) and HSL(A).

Chapter 6, Stunning Aesthetics with CSS3, shows how to create text shadows, box
shadows, and gradients with pure CSS3. We also cover how to add multiple
background images and create icons with a font.

Chapter 7, CSS3 Transitions, Transformations, and Animations, covers how to create,
animate, and transform on-screen elements with nothing more than CSS3.

Chapter 8, Conquer Forms with HTML5 and CSS3, illustrates how to implement
cross-browser form techniques that work on everything from the latest smart
phones to desktop browsers.

Chapter 9, Solving Cross-browser Responsive Challenges, explains how to make old
Internet Explorer versions responsive, adapt a set of links to a menu on mobile
devices, serve different content for high-resolution displays, and conditionally
load assets with Modernizr.

What you need for this book
You'll need a good familiarity with HTML and CSS. A very basic understanding
of JavaScript may also help. A good taste in films will also be beneficial.

Who this book is for
Are you writing two websites—one for mobile and one for larger displays? Or
perhaps you've heard of "responsive design" but are unsure how to bring HTML5,
CSS3, and responsive design together. If so, this book provides everything you need
to take your web pages to the next level—before all your competitors do!

This book is aimed at web designers and web developers who currently build
fixed-width websites with HTML 4.01 and CSS 2.1. This book explains how to
build responsive websites with HTML5 and CSS3 that adapt to any screen size.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text are shown as follows: "HTML5 also accepts a far slacker syntax to
be considered "valid". For example, <sCRipt SrC=js/jquery-1.6.2.js></script>
is just as valid as the prior example."

A block of code is set as follows:

<div class="header">
 <div class="navigation">
 <ul class="nav-list">
 Home
 About

 </div> <!—end of navigation -->
</div> <!—end of header -->

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 96%; /* Holding outermost DIV */
}

#header {
 margin-right: 10px;
 margin-left: 10px;
 width: 97.9166667%; /* 940 ÷ 960 */
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "For
example, the navigation menu doesn't alternate between red and black, the main
THESE SHOULD HAVE WON button in the content area and the full info buttons
from the sidebar are missing and the fonts are all a far cry from the ones shown in
the graphic file".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started with HTML5,
CSS3, and Responsive

Web Design
Until relatively recently, websites could be built at a fixed width, such as 960 pixels,
with the expectation that all end users would get a fairly consistent experience.
This fixed width wasn't too wide for laptop screens, and users with large resolution
monitors merely had an abundance of margin either side.

But now, there are smart phones. Apple's iPhone ushered in the first truly usable
phone browsing experience, and many others have now followed that lead. Unlike
the small-screen web browsing implementations of yesterday, that required
the thumb dexterity of a Tiddlywinks world champion to use, people are now
comfortably using their phones to browse the Web. In addition, there is a growing
consumer trend of using small screen devices (tablets and netbooks, for example)
in preference to their full screen brethren for content consumption in the home. The
indisputable fact is that the number of people using these smaller screen devices to
view the Internet is growing at an ever-increasing rate, whilst at the other end of the
scale, 27 and 30 inch displays are now also commonplace. There is now a greater
difference between the smallest screens browsing the Web and the largest than
ever before.

Thankfully, there is a solution to this ever-expanding browser and device landscape.
A responsive web design, built with HTML5 and CSS3, allows a website to 'just
work' across multiple devices and screens. And the best part is that the techniques
are all implemented without the need for server based/backend solutions.

Getting Started with HTML5, CSS3, and Responsive Web Design

[8]

In this chapter we shall:

•	 Learn the importance of supporting small screen devices
•	 Define "mobile website" design
•	 Define "responsive website" design
•	 Look at great examples of responsive web design
•	 Learn the difference between viewport and screen sizes
•	 Install and use viewport changing browser extensions
•	 Use HTML5 to create cleaner and leaner markup
•	 Use CSS3 to solve common design challenges

Why smart phones are important (and old
IE isn't)
Whilst statistics should only ever be used as a rough guide, it's interesting to note
that according to gs.statcounter.com, in the 12 months from July 2010 to July 2011,
global mobile browser use had risen from 2.86 to 7.02 percent. The same statistics
show that usage of Internet Explorer 6 fell from 8.79 to 3.42 percent. Even Internet
Explorer 7 had fallen to 5.45 percent by July 2011. If clients often ask you to "make
our site work in Internet Explorer 6 and 7", a fair riposte might be "maybe we should
be concentrating our efforts elsewhere?" Far more people are now browsing websites
on a mobile phone than with a desktop or laptop running Internet Explorer 6 or 7.
That deafening noise you just heard is the collective celebratory whoops of frontend
developers around the globe!

So, there are a growing number of people using small screen devices to browse the
Internet, and the Internet browsers of these devices have typically been designed to
handle existing websites without problems. They do this by shrinking a standard
website to fit the viewable area (or viewport to give it the correct technical term)
of the device. The user then zooms in on the area of content they are interested in.
Excellent, so why do we, as frontend designers and developers, need to take any
further action?

Chapter 1

[9]

Well, the more you browse websites, such as the one shown in the preceding
screenshot, on iPhones and Android powered handsets, the more apparent the
reasons become. It's a tedious and frustrating task to constantly zoom in and out
of page areas to see them at a readable size and then move the page left and right
to read sentences that are hanging out of the viewport just enough to be annoying,
whilst not inadvertently tapping a link you don't want to. Surely we can do better!

Getting Started with HTML5, CSS3, and Responsive Web Design

[10]

Are there times when a responsive
design isn't the right choice?
Where budgets allow, and the situation necessitates, a truly "mobile" version of
a website could arguably be the preferred option. This could serve up different
content, design, and interaction based upon the device, location, connection speed,
and host of other variables including the technical capabilities of the device. As a
practical example, imagine a pizza chain. It might have one "standard" website and
a "mobile" version that adds an augmented reality feature based on your current
GPS location to help you find the store. This kind of solution needs more than a
responsive design alone can offer.

However, while not every project demands that level of sophistication, in almost
all other instances, it would still be preferable to provide users with a tailored view
of our content dependent upon the size of their viewport. For example, on most
sites, although serving the same content, I'd like to vary the way it's displayed. On
small screens, perhaps put elements of less importance beneath the main content,
or as a worst-case scenario, hide them altogether. Maybe alter navigation buttons to
accommodate finger presses, rather than only offering a usable experience to those
able to proffer a precise mouse click! Typography should also be scaled for the sake
of readability, allowing text to be read without necessitating constant swipes from
side to side. By the same token, whilst catering for smaller viewports, we don't want
to compromise the design for those using standard laptop and desktop screens.
While we're being all inclusive, what about a few extra enhancements for those with
large screens such as 1900 pixels wide and more? In short, I, and I suspect you too,
need designs to respond to the entire gamut of viewport sizes that may be used to
view them.

Defining responsive web design
The term responsive web design was coined by Ethan Marcotte. In his seminal List
Apart article (http://www.alistapart.com/articles/responsive-web-design/)
he consolidated three existing techniques (flexible grid layout, flexible images,
and media and media queries) into one unified approach and named it responsive
web design. The term is often used to infer the same meaning as a number of
other descriptions such as fluid design, elastic layout, rubber layout, liquid design,
adaptive layout, cross-device design, and flexible design.

http://www.alistapart.com/articles/responsive-web-design/

Chapter 1

[11]

To name just a few! However, as Mr. Marcotte and others have eloquently argued, a
truly responsive methodology is actually more than merely altering the layout of a
site based upon viewport sizes. Instead, it is to invert our entire current approach to
web design. Instead of beginning with a fixed width desktop site design and scaling
it down and re-flowing the content for smaller viewports, we should design for the
smallest viewport first and then progressively enhance the design and content for
larger viewports.

Responsive web design in a nutshell
To attempt to put the philosophy of responsive web design in a nutshell,
I would say it's the presentation of content in the most accessible manner
for any viewport that accesses it. Conversely, a truly "mobile website" is
needed when an experience requires specific content and functionality
based upon the device accessing it. In these cases, a mobile website
presents an entirely different user experience to its desktop equivalent.

Why stop at responsive design?
A responsive web design will handle the flow of our page content as viewports
change but let's go further. HTML5 offers us more than HTML 4 ever could and
it's more meaningful semantic elements will form the basis of our markup. CSS3
media queries are an essential ingredient to a responsive design but additional CSS3
modules empower us with previously unseen levels of flexibility. We'll be ditching
swathes of background graphics and complicated JavaScript, replacing them with
lean CSS3 gradients, shadows, typography, animations and transformations.

Before we get on with creating a responsive HTML5 and CSS3 powered web design,
let's first look at some examples of what we should aspire to. Who is already doing a
good job with all this new fangled responsive HTML5 and CSS3 malarkey and what
can we learn from their pioneering efforts?

Examples of responsive web design
To test your own and others' responsive website designs fully would involve having
separate systems set up for every device and screen size. Although nothing betters
that practice, the majority of testing can be achieved simply by resizing the browser
window. To further aid this method, there are various third-party plugins and
browser extensions that display the current browser window or viewport size in
pixels. Or in some cases, automatically switch the current window or viewport to a
default screen size (1024 x 768 pixels, for example). This allows you to more easily
test what happens as screen viewports change.

Getting Started with HTML5, CSS3, and Responsive Web Design

[12]

Attached to pixels? Get over it!
Don't get very attached to pixels as a measurement unit because we
will be abandoning them in many instances and moving to relative
measurement units (typically, "em" or "ems" and percentages) instead,
once we get into responsive web design proper. For reviewing the work
of other responsive designs and where those designs change however,
they provide a handy reference point.

Get your viewport testing tools here!
Internet Explorer users should make sure that they have the Microsoft Internet
Explorer Developer Toolbar. This can be downloaded from the following URL:

http://www.microsoft.com/download/en/details.aspx?id=18359

If you are using Safari, my personal favorite is Resize (http://resizeSafari.com/),
although ResizeMe (http://web.me.com/aaronholla/Safari_Extensions/
ResizeMe.html) is similar and free.

If you use Firefox, there is Firesizer (https://addons.mozilla.org/en-US/
firefox/addon/firesizer/) and Chrome users should check out the aptly
titled Windows Resizer (https://chrome.google.com/webstore/detail/
kkelicaakdanhinjdeammmilcgefonfh).

Not a fan of extensions? Here's a further alternative: I wrote a simple HTML page to
display the current viewport height and width of a browser window. Using a dab
of the JavaScript library, jQuery (http://jquery.com), this page gets the current
viewport height and width, and displays them. You can keep this page open in
another browser tab, resize your window, and then flick back to the website in
question to see how it fares. You can find the super simple "What size is my
viewport page?" page at the following URL:

http://benfrain.com/easily-display-the-viewport-size-of-your-page-
for-responsive-designs/

https://addons.mozilla.org/en-US/firefox/addon/firesizer/
https://addons.mozilla.org/en-US/firefox/addon/firesizer/
http://jquery.com

Chapter 1

[13]

Viewport or screen size?
It's important to understand that viewport and screen size are not the
same thing. Viewport relates to the content area within the browser
window, excluding the toolbars, tabs, and so on. More succinctly, it
relates to the area where a website actually displays. Screen size refers
to the physical display area of a device. Beware that some browser resizer
tools display the size, including browser elements such as the URL bar,
tabs, and search boxes, and others don't. In the following screenshot, the
actual viewport size is shown at the top-right position (1156 x 921 px)
whilst the Firesizer plugin shows the window size at the bottom-right
position (1171 x 1023).

Getting Started with HTML5, CSS3, and Responsive Web Design

[14]

Now, we're armed with everything we need to start appreciating the best that the
responsive web has to offer. Fire up your browser of choice, engage your screen size
tool, and take a look at http://thinkvitamin.com/.

If you are viewing the page with a viewport larger than 1060 pixel wide, you will see
a layout similar to the one shown in the following screenshot:

http://thinkvitamin.com/
http://thinkvitamin.com/

Chapter 1

[15]

If however, you're viewing the site with a viewport larger than 930 pixels but lower
than 1060 pixels, you will see a layout, as shown in the following screenshot:

Getting Started with HTML5, CSS3, and Responsive Web Design

[16]

Notice how the main navigation to the side of the logo has changed? The icons to the
right of the main content have been arranged to sit one under another. Everything is
perfectly usable, and most importantly, isn't disappearing off the screen. Now, take a
look with a viewport less than 880 pixels, in the following screenshot:

The header remains similar but notice that the right-hand sidebar is thinner still;
the icons are now 2 by 2 whilst the text blocks have adjusted and the text is flowing
accordingly within the block.

Chapter 1

[17]

However, reduce your viewport to less than 600 pixel in width and you will notice a
major change, as shown in the following screenshot:

How about that? The entire sidebar has responded to our new viewport, letting
the most important part of the site, the content, enjoy the full width of the browser
window. Notice also how the header links are now horizontal, as opposed to being at
the side of the logo, and the logo itself has resized? All these changes help to create a
better experience for the user based upon the viewport dimensions.

Getting Started with HTML5, CSS3, and Responsive Web Design

[18]

Let's look at another example, http://2011.dconstruct.org/. With a wide
viewport (say, more than 1350 pixels) the site looks like the one shown in the
following screenshot:

Notice particularly the grid of nine images. As you decrease the width of the
viewport (to less than around 960 pixels), notice what happens? The grid of three
rows of three images becomes three rows of two images and one row of three at the
bottom, as shown in the following screenshot:

http://2011.dconstruct.org/

Chapter 1

[19]

Getting Started with HTML5, CSS3, and Responsive Web Design

[20]

Decreasing the width of our viewport smaller still, at less than around 720 pixels we
encounter another design "break point"; the header links switch to include images
that provide a better target area for touchscreen navigation:

Smaller still, once we reduce the viewport to less than 480 pixels wide, the image
grid changes again, now showing a row of two images, then three, and then four.
These images continue to resize as the viewport is shrunk to around 300 pixels. To
illustrate, the following screenshot shows how it looks on an iPhone:

Chapter 1

[21]

Online sources of inspiration
One web destination that is useful for inspiration is http://mediaqueri.es.
However, not all websites displayed there necessarily embrace the full responsive
methodology of displaying content around small viewports first, and progressively
enhancing for larger viewports. Regardless, at this early point, whilst considering
the possibilities of what we can do with responsive web design, there are many great
examples to draw ideas from. Although viewing these websites and resizing the
viewport illustrates what a responsive web design can do, it doesn't demonstrate
what's good about HTML5. The benefits of HTML5 occur "behind the scenes" as it
were, so let's now turn our attention there and find out what's so great about HTML5.

Getting Started with HTML5, CSS3, and Responsive Web Design

[22]

HTML5—why it's so good
HTML5 places some emphasis on streamlining the actual markup required to create
a page that validates to W3C standards and link all our requisite CSS, JavaScript,
and image files. For smart phone users, possibly viewing our pages with limited
bandwidth, and a key target for our responsive designs, we want our website to not
just respond to their more limited viewport but also load in the fastest possible time.
Whilst removing superfluous markup elements represents only a tiny data saving,
every little helps!

HTML5 offers further benefits and additional features over the previous iteration of
HTML (HTML 4.01). Frontend web developers are likely to be primarily interested in
the new semantic elements of HTML5 that provide more meaningful code to search
engines. HTML5 also enables feedback to the user on basic site interactivity such
as form submissions and so on, often negating the need for more resource heavy
JavaScript form processing. Again, that's good news for our responsive design,
allowing us to create a leaner and faster-loading code base.

Saving time and code with HTML5
The first line of any HTML document starts with the Doctype (Document Type
Declaration). This is the part that, if we are honest, gets added automatically by our
code editor of choice or we can paste it from an existing boilerplate (nobody really
enters the full HTML 4.01 Doctype out, do they?) Before HTML5, the Doctype for a
standard HTML 4.01 page would have looked as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

Now, with HTML5, it's merely as follows:

<!DOCTYPE html>

Now, as I've already conceded, I don't physically type the Doctype every time I write
a page, and I suspect you don't either. So, what's the big deal I hear you cry? Well,
what about adding links to JavaScript or CSS in your pages? With existing HTML
4.01, the correct way of linking to a script file would be as follows:

<script src="js/jquery-1.6.2.js" type="text/javascript"></script>

HTML5 makes this easier:

<script src="js/jquery-1.6.2.js"></script>

http://www.w3.org/TR/html4/loose.dtd

Chapter 1

[23]

As you can see, the need to specify the type attribute is no longer considered
necessary. It's a similar case with linking to CSS files. HTML5 also accepts a far
slacker syntax to be considered "valid". For example, <sCRipt SrC=js/jquery-
1.6.2.js></script> is just as valid as the prior example. We've omitted the
quotation marks around the script source as well as using a combination of upper
and lower case characters in the tag and attribute names. But HTML5 doesn't care—it
will still validate at the W3C HTML5 validator (http://validator.w3.org/). This
is good news if you are sloppy with your code writing but also, more usefully, if you
want to shave every possible surplus character from your markup. There are other
specifics when it comes to the writing of code that make life easier. But I'm guessing
you're not convinced this is all that exciting. So, let's take a quick peek at the new
semantic elements of HTML5.

New, semantically meaningful HTML5 tag
elements
When you're structuring an HTML page, it's standard fare to mark up a header and
navigation section something like this:

<div class="header">
 <div class="navigation">
 <ul class="nav-list">
 Home
 About

 </div> <!—end of navigation -->
</div> <!—end of header -->

However, take a look at how we do it with HTML5:

<header>
 <nav>
 <ul id="nav-list">
 Home
 About

 </nav>
</header>

Getting Started with HTML5, CSS3, and Responsive Web Design

[24]

How about that? Instead of faceless <div> tags for every structural element (albeit with
added class names for styling purposes), HTML5 gives us some far more semantically
meaningful elements to use instead. Common structural sections within pages such as
header and navigation (and many more as we shall soon see) get their own element
tags. Our code just became far more "semantic" with the <nav> tag telling browsers,
"Hey, this section right here is for navigation". Good news for us but perhaps more
importantly, good news for search engines, too. They'll now be able to understand our
pages better than ever before and rank our content accordingly.

When I write HTML pages, I often do so knowing that they will in turn be passed
to the backend crew (you know, those cool kids that deal with PHP, Ruby, .NET,
ColdFusion, and so on) before the pages ultimately make it to the WWW. To stay on
good terms with the backend folks, I often comment the closing </div> tags within
the code to enable others (and often myself too) to easily establish where <div>
elements end. HTML5 negates much of that task. When looking at HTML5 code, a
closing element tag of </header> for example, instantly tells you what element is
closing, without the need to add a comment.

We're just lifting the lid a little here on what semantic goodies HTML5 has for
us in the toy box. Before we get carried away, we have one more friend to get
acquainted with. If there's one thing this whole new era of web design can't
exist without, it's CSS3.

CSS3 enables responsive designs and
more
If you've been in the web design trade from the mid-1990s, you'll remember that
back then, all designs were table-based and the styling was entwined with content.
Cascading Style Sheets (CSS) were introduced as a way of separating design from
the content. It took some time for web designers to step into the bold new world of
CSS-based design but sites such as http://www.csszengarden.com paved the way,
showing just what could be achieved, visually, with a CSS-based design. Since then,
CSS has become the standard way of defining the presentational layer of a web page,
with CSS 2.1 being the current ratified version of the CSS specification. CSS3 has yet to
be fully ratified but that doesn't mean that large portions of it aren't fully usable today.
The W3C working group note at http://www.w3.org/TR/CSS/#css3 is as follows:

CSS Level 3 builds on CSS Level 2 module by module, using the CSS2.1
specification as its core. Each module adds functionality and/or replaces part of the
CSS2.1 specification. The CSS Working Group intends that the new CSS modules
will not contradict the CSS2.1 specification: only that they will add functionality
and refine definitions.

http://www.csszengarden.com

Chapter 1

[25]

Much of the draft W3C specification reads (by necessity) like legalese. In simplistic
terms, what matters to us is that CSS3 is built as a set of 'bolt-on' modules rather than
a single consolidated whole. As CSS 2.1 is at the core, none of the techniques you use
with CSS 2.1 today are abandoned. Instead, certain, more mature modules (as not
all modules are at the same state of readiness) of CSS3 can be actively used today,
without waiting for the entire specification to be ratified.

The bottom line—CSS3 won't break anything!
Perhaps the most empowering point of note is that there is no penalty in older
browsers for including properties that they do not understand. Older browsers
(including Internet Explorer 6, 7, and 8) will happily skip over CSS3 properties
that they can't process. This gives us the ability to progressively enhance areas of a
design for the better-equipped browsers, whilst ensuring a reasonable fall back for
the older ones.

How can CSS3 solve everyday design
problems?
Let's consider a common design hurdle we all face on most projects—to create a
rounded corner on a screen element, perhaps for a tabbed interface or corner of a
boxed element such as a header for example. Using CSS 2.1 this could be achieved
by using a sliding doors technique (http://www.alistapart.com/articles/
slidingdoors/), whereby one background image sits behind another. The HTML
could look as simple as this:

Box Title

We add a rounded background to the <a> element by creating two images. The first,
called headerLeft.png, would be 15 pixels wide and 40 pixels high and the second,
called headerRight.png in this example, would be made wider than we would ever
anticipate the header being (280 pixels, here). Each would be one half of the "sliding
door". As one element grows (the text within our tags), the background fills
the space creating a somewhat future proof rounded corner solution. Here is how the
CSS in this example looks:

a {
 display: block;
 height: 40px;
 float: left;
 font-size: 1.2em;
 padding-right: 0.8em;
 background: url(images/headerRight.png) no-repeat scroll top right;

Getting Started with HTML5, CSS3, and Responsive Web Design

[26]

}
a span {
 background: url(images/headerLeft.png) no-repeat;
 display: block;
 line-height: 40px;
 padding-left: 0.8em;
}

The following screenshot shows how it looks in Google's Chrome (v16):

It solves the design problem but requires additional markup (semantically the
 element has no value) and two additional HTTP requests (for the images)
to the server to create the onscreen effect. Now, we could combine the two images
into one to create a sprite and then use the background-position: CSS property
to shift it around but even with the bandwidth economies that provides, it's still an
inflexible solution. What happens if the client decides they want the corners to have a
tighter radius? Or a different color? We'd need to re-make our image(s) again. Sadly,
until CSS3, this has been the reality of the situation we, as frontend designers and
developers have found ourselves in. Ladies and gentleman, I've seen the future, and
it's CSS3 shaped! Let's revise the HTML to be only:

Box Title

And, to begin with, the CSS can become the following:

a {
 float: left;
 height: 40px;
 line-height: 40px;
 padding-left: 0.8em;
 padding-right: 0.8em;
 border-top-left-radius: 8px;
 border-top-right-radius: 8px;
 background-image: url(images/headerTiny.png);
 background-repeat: repeat-x;
}

Chapter 1

[27]

The following screenshot shows how the CSS3 version of the button looks in the
same browser (Chrome v16):

In this example, the two previous images have been substituted for a single 1 pixel-
wide image that is repeated along the x-axis. Although the image is only 1 pixel
wide, it is 40 pixels high, hopefully higher than any contents that will be inserted.
When using an image as a background, it's always necessary to "overshoot" the
height, in anticipation of content overflowing, which sadly makes for bigger images
and greater bandwidth requirements. Here, however, unlike the entirely image-
based solution, CSS3 takes care of the corners for us with the border-radius and
related properties. Client wants the corners to be a little rounder, say 12 pixels? No
problem, just amend the border-radius property to 12px and your work is done.
The CSS3 rounded corners property is fast, flexible, and supported in Safari (v3+),
Firefox (v1+), Opera (v10.5+), Chrome (v3+), and Internet Explorer 9. Microsoft are
so excited about IE 9's support of the feature that (I hope you feel my slight sarcasm
seeping through here) they have even designed an interactive page demonstrating
the various effects that can be achieved with the border-radius property. View this
demonstration at the following URL:

http://ie.microsoft.com/testdrive/html5/borderradius/default.html

CSS3 can take things further by eliminating the need for a gradient background
image by producing the effect in the browser instead. This property isn't as well
supported but with something along the lines of linear-gradient(yellow, blue),
the background of any element can enjoy a CSS3 generated gradient.

Getting Started with HTML5, CSS3, and Responsive Web Design

[28]

The gradient can be specified in solid colors, traditional HEX values (for example,
#BFBFBF) or using one of the CSS3 color modes (more on these in Chapter 5, CSS3:
Selectors, Typography, and Color Modes). If you're happy for users of older browsers
to see a solid background instead of a gradient (as opposed to nothing), a CSS stack
something like this would provide a solid color in the event of the browser being
unable to handle the gradient:

background-color: #42c264;
background-image: -webkit-linear-gradient(#4fec50, #42c264);
background-image: -moz-linear-gradient(#4fec50, #42c264);
background-image: -o-linear-gradient(#4fec50, #42c264);
background-image: -ms-linear-gradient(#4fec50, #42c264);
background-image: -chrome-linear-gradient(#4fec50, #42c264);
background-image: linear-gradient(#4fec50, #42c264);

The linear-gradient property instructs the browser to start with the first color
value (#4fec50, in this example) and move to the second color value (#42c264).

You'll notice that in the CSS code, the background-image linear-gradient
property has been repeated with a number of prefixes; for example, -webkit-. This
allows different browser vendors (for example, -moz- for Mozilla Firefox, -ms- for
Microsoft Internet Explorer, and so on) to experiment with their own implementation
of the new CSS3 properties before introducing the finished article, at which point
the prefixes are unneeded. As stylesheets by their nature cascade, we place the un-
prefixed version last, meaning it will supersede the earlier declarations if available.

Look Ma'—no images!
The following screenshot shows how the complete CSS3 button looks in the
same browser:

I think you'll agree—any differences between the image version and the entirely CSS
version are trivial. Building visual elements with CSS3 allows our responsive design
to be far leaner than if we built it with images. Furthermore, image gradients are well
supported in modern mobile browsers, the only trade-off being a lack of gradient
support for browsers such as IE 9 and lower versions.

Chapter 1

[29]

What else has CSS3 got to offer?
So far, we've looked at a very mundane example of where CSS3 can help in everyday
development tasks. However, let's whet our appetite a little and see what real treats
CSS3 allows us. Fire up Safari or Chrome and take a look at http://www.panic.
com/blog/. Whilst sadly this design isn't responsive, the area of interest for us are
the pinned notes at the top. Hover over them and watch as they float out. Nice, eh?
In the past this kind of enhancement would have been the domain of resource heavy
Flash or JavaScript. Here, it is being achieved entirely through CSS3 transformations.
Using CSS3 rather than JavaScript or Flash makes the animation lightweight,
maintainable, and therefore perfect for a responsive design. The browsers that
support the feature get it, whilst others are none the wiser, merely seeing a static
image in its place.

http://www.panic.com/blog/

Getting Started with HTML5, CSS3, and Responsive Web Design

[30]

Another great example of CSS3 transformations is http://demo.marcofolio.
net/3d_animation_css3/. Again, this isn't a responsive web design, we're just
looking at the CSS tricks being employed. Take a look at this in Internet Explorer
9 or Firefox first (as of version 9.0, Firefox still didn't support the necessary CSS3
module). Now, take a look in Safari 5+ or Chrome 16+. The following screenshot
doesn't do it much justice so if you're not going to take a look you'll have to take my
word for it—it's good:

But great looking effects aren't solely the domain of the Webkit-based Safari and
Chrome browsers. The following URL works in Firefox too and is another pure
CSS3-based solution:

http://designlovr.com/examples/dynamic_stack_of_index_cards/

http://demo.marcofolio.net/3d_animation_css3/
http://designlovr.com/examples/dynamic_stack_of_index_cards/
http://designlovr.com/examples/dynamic_stack_of_index_cards/
http://designlovr.com/examples/dynamic_stack_of_index_cards/

Chapter 1

[31]

Obviously, these effects are not essential for any website. They are a perfect
illustration of "progressive enhancement". In browsers that do not support the
effects, they merely see the static images. However, users with more modern
browsers can enjoy the visual enhancements. Whilst browser support for CSS3 3D
Transformations is rather limited, support for CSS3 rules such as text-shadows,
gradients, rounded borders, RGBA color, and multiple background images are all
widely supported and provide flexible ways of providing solutions to common
design problems that have had us all cursing and scratching our heads for years.

Can HTML5 and CSS3 work for us today?
Any tool or technique should only be used if the application requires it. As frontend
developer/designers, our projects typically come with a finite amount of time and
resources available to make them financially viable.

Getting Started with HTML5, CSS3, and Responsive Web Design

[32]

As Internet Explorer 7 and 8 don't support the new semantic HTML5 elements or
CSS3 properties as standard, if the vast majority of visitors to a site use Internet
Explorer 7 or 8, it doesn't make a lot of sense to concentrate your resource on
producing a responsive HTML5 and CSS3 based design for it. That doesn't mean
doing so is an impossible task. As we shall see in Chapter 9, Solving Cross-browser
Responsive Challenges, there are a growing number of tools (referred to as polyfills as
they cover the cracks in older browsers) to patch browsers (mainly Old IE) lacking
support for more recent browser features, but adopting a sensible approach to the
implementation of a responsive web design from the outset is always the best policy.

In my own experience I typically ask the following from the outset:

•	 Does the client want to support the largest growing market of Internet users?
If yes, responsive methodology is suitable.

•	 Does the client want the cleanest, fastest, and most maintainable code base?
If yes, responsive methodology is suitable.

•	 Does the client understand that experience can and should be subtly different
across different browsers? If yes, responsive methodology is suitable.

•	 Does the client require the design to look identical across all browsers,
including IE 8 and lower versions? If yes, responsive design is not
best suited.

•	 Are 70 percent or more of the current or expected visitors to the site likely
to use Internet Explorer 8 or lower versions? If yes, responsive design is not
best suited.

It's also important to re-iterate that where the budget allows, there may be times
when a fully bespoke "mobile" version of a website is a more relevant option than
a responsive design. For the sake of clarification, I term entirely mobile focused
solutions that provide different content/experiences to their mobile users as 'mobile
websites'. I don't believe anyone advocating responsive web design techniques
would argue that a responsive web design would be a suitable substitute for a
'mobile website' in every situation.

Chapter 1

[33]

Responsive web designs are not magic
bullets
At the risk of "teaching Grandma to suck eggs", it's worth re-stating that a
responsive HTML5 and CSS3 web design is not a "magic bullet" panacea for all
design and content serving challenges. As ever with web design, the specifics
of a project (namely budget, target demographic, and purpose) should dictate
the implementation. However, in my experience, if the budget is limited and/or
the programming of an entirely bespoke "mobile website" isn't a viable option, a
responsive web design almost always provides a better and more inclusive user
experience than a standard, fixed-width design.

Educating our clients that websites
shouldn't look the same in all browsers
The final hurdle to clear before embarking on a responsive design is often one
of mindset. And in some ways, this is perhaps the most difficult to overcome.
For example, I'm often asked to convert existing graphic designs into standards
compliant HTML/CSS and jQuery-based web pages. In my own experience, it's
rare (and when I say rare, I mean it's never happened) for graphic designers to
have anything other than a fixed-width "desktop version" of a site in mind when
producing their design composites. My remit is then to create a pixel perfect
rendition of that design in every known browser. Failing or succeeding in this
task defines success in the eyes of my client, the graphic designer. This mindset is
especially entrenched in clients with a background in printed media design. It's easy
to understand their reasoning; a composite of the design can be signed-off by their
own clients, they hand it to the frontend designer/developer (you or I), and we then
spend our time ensuring the finished code looks as close as humanly possible to that
design in all the major browsers. What the client sees is what the client gets.

However, if you've ever tried to get a modern web design looking the same in
Internet Explorer 6 and 7 as it does in a modern standards compliant browser such
as Safari, Firefox, or Chrome, you will understand the inherent difficulties. It's
often taken me as much as 30 percent of a project's allocated time/budget to fix the
inherent flaws and failings in these older ailing browsers. That time could have been
spent building on enhancements and economizing code for the growing number
of users viewing sites in modern browsers, rather than patching and hacking the
code base to provide rounded corners, transparent images, correctly aligned form
elements, and so on for a shrinking number of Internet Explorer users.

Getting Started with HTML5, CSS3, and Responsive Web Design

[34]

Unfortunately, the only antidote to this scenario is education. The client needs an
explanation as to why a responsive design would be worthwhile, what it entails, and
why the finished design won't and shouldn't look the same across all viewports and
browsers. Some clients get there, some don't. Unfortunately, some still want all the
rounded corners and drop shadows to look identical in Internet Explorer 6 too!

When I approach a new project, whether a responsive design is applicable or not, I
try and explain the following points to my client:

•	 By allowing older browsers to display the pages slightly differently, it means
that code is more maintainable and cheaper to update in the future.

•	 Making all elements look the same, even on older browsers (for example,
Internet Explorer 8 and lower versions) adds a significant amount of images
to a website. This makes it slower, more expensive to produce and more
difficult to maintain.

•	 Leaner code that modern browsers understand equates to a faster website. A
faster website ranks higher in search engines than a slow one.

•	 The number of users with older browsers is shrinking, the number of users
with modern browsers is growing—let's support them!

•	 Most importantly, by supporting modern browsers, you can enjoy a
responsive web design that responds to the differing viewports of browsers
on different devices.

Summary
We've now established what we mean by a "responsive" design and examined great
examples of responsive designs in the wild that make use of the tools and techniques
we are about to cover. We've also acknowledged that we need to make a switch
from a desktop-centric design mindset and move to a more device agnostic stance,
planning our content around the smallest likely viewing area first and progressively
enhancing the experience from there. Having taken a glimpse at the new HTML5
specification we've established that there are great portions of it we can use to our
advantage today. Namely, the new semantic markup that will allow us to create
pages with less code and more meaning than would have been possible previously.

The lynch pin in making a fully responsive web design is CSS3. Before we use CSS3
to add visual flair such as the gradients, rounded corners, text shadows, animations
and transforms to our design, we will first use it to serve a more fundamental role.
By using CSS3 media queries, we will be able to target specific CSS rules at specific
viewports. The next chapter is where we will start our "responsive web design" quest
in earnest.

Media Queries: Supporting
Differing Viewports

As we noted in the last chapter, CSS3 consists of a number of bolt-on modules.
Media queries is just one of these CSS3 modules. Media queries allow us to
target specific CSS styles depending upon the display capabilities of a device. For
example, with just a few lines of CSS we can change the way content displays based
upon things such as viewport width, screen aspect ratio, orientation (landscape or
portrait), and so on.

In this chapter, we shall:

•	 Learn why media queries are needed for a responsive web design
•	 Learn how a CSS3 media query is constructed
•	 Understand what device features we can test for
•	 Write our first CSS3 media query
•	 Target CSS style rules to specific viewports
•	 Learn how to make media queries work on iOS and Android devices

You can use media queries today
Media queries are already widely used and enjoy a broad level of browser support
(Firefox 3.6+, Safari 4+, Chrome 4+, Opera 9.5+, iOS Safari 3.2+, Opera Mobile 10+,
Android 2.1+, and Internet Explorer 9+). Furthermore, there are easy to implement
(albeit JavaScript based) fixes for common aged browsers such as Internet Explorer
versions 6, 7, and 8. If you need to grab the fixes for Internet Explorer versions 6, 7, and
8 now, you'll need to look at Chapter 9, Solving Cross-browser Responsive Challenges. In
short, there's no good reason why we can't get using media queries today!

Media Queries: Supporting Differing Viewports

[36]

Specifications at the W3C go through a ratification
process (if you have a spare day, knock yourself out with
the official explanation of the process at http://www.
w3.org/2005/10/Process-20051014/tr), from Working
Draft (WD), to Candidate Recommendation (CR), to Proposed
Recommendation (PR) before finally arriving, many years
later, at W3C Recommendation (REC). So modules at a
greater maturity level than others are generally safer to use.
For example, CSS Transforms Module Level 3 (http://www.
w3.org/TR/css3-3d-transforms/) has been at WD status
since March 2009 and browser support for it is far scanter than
CR modules such as media queries.

Why responsive designs need media
queries?
Without the CSS3 media query module, we would be unable to target particular CSS
styles at particular device capabilities, such as the viewport width. If you head over
to the W3C specification of the CSS3 media query module (http://www.w3.org/TR/
css3-mediaqueries/), you'll see that this is their official introduction to what media
queries are all about:

HTML 4 and CSS2 currently support media-dependent style sheets tailored for
different media types. For example, a document may use sans-serif fonts when
displayed on a screen and serif fonts when printed. 'screen' and 'print' are two
media types that have been defined. Media queries extend the functionality of media
types by allowing more precise labeling of style sheets.

A media query consists of a media type and zero or more expressions that check for
the conditions of particular media features. Among the media features that can be
used in media queries are 'width', 'height', and 'color'. By using media queries,
presentations can be tailored to a specific range of output devices without changing
the content itself.

Media query syntax
So what does a CSS media query look like and more importantly, how does it work?

http://www.w3.org/TR/css3-3d-transforms/
http://www.w3.org/TR/css3-3d-transforms/

Chapter 2

[37]

Enter the following code at the bottom of any CSS file and preview the related
web page:

body {
 background-color: grey;
}
@media screen and (max-width: 960px) {
 body {
 background-color: red;
 }
}
@media screen and (max-width: 768px) {
 body {
 background-color: orange;
 }
}
@media screen and (max-width: 550px) {
 body {
 background-color: yellow;
 }
}
@media screen and (max-width: 320px) {
 body {
 background-color: green;
 }
}

Now, preview the file in a modern browser (at least IE 9 if you use IE) and resize the
browser window. The background color of the page will vary depending upon the
current viewport size. I've used named colors here for clarity but ordinarily you'd
use a HEX code; for example, #ffffff.

Now, let's go ahead and break down these media queries to understand how we can
make best use of them.

If you are used to working with CSS2 stylesheets you'll know it's possible to specify
the type of device (for example, screen or print) applicable to a stylesheet with the
media attribute of the <link> tag. You could do so by placing a link as done in the
following code snippet within the <head> tags of your HTML:

<link rel="stylesheet" type="text/css" media="screen" href="screen-
styles.css">

Media Queries: Supporting Differing Viewports

[38]

What media queries principally provide is the ability to target styles based upon the
capability or features of a device, rather than merely the type of device. Think of it as
a question to the browser. If the browser's answer is "true", the enclosed styles are
applied. If the answer is "false", they are not. Rather than just asking the browser
"Are you a screen?"—as much as we could effectively ask with just CSS2—media
queries ask a little more. Instead, a media query might ask, "Are you a screen and
are you in portrait orientation?" Let's look at that as an example:

<link rel="stylesheet" media="screen and (orientation: portrait)"
href="portrait-screen.css" />

First, the media query expression asks the type (are you a screen?), and then
the feature (is your screen in portrait orientation?). The portrait-screen.css
stylesheet will be loaded for any screen device with a portrait screen orientation
and ignored for any others. It's possible to reverse the logic of any media query
expression by adding not to the beginning of the media query. For example, the
following code would negate the result in our prior example, loading the file for
anything that wasn't a screen with a portrait orientation:

<link rel="stylesheet" media="not screen and (orientation: portrait)"
href="portrait-screen.css" />

It's also possible to string multiple expressions together. For example, let's extend
our first media query example and also limit the file to devices that have a viewport
greater than 800 pixels.

<link rel="stylesheet" media="screen and (orientation: portrait) and
(min-width: 800px)" href="800wide-portrait-screen.css" />

Further still, we could have a list of media queries. If any of the listed queries are
true, the file will be loaded. If none are true, it won't. Here is an example:

<link rel="stylesheet" media="screen and (orientation: portrait) and
(min-width: 800px), projection" href="800wide-portrait-screen.css" />

There are two points to note here. Firstly, a comma separates each media query.
Secondly, you'll notice that after projection, there is no trailing and or feature/
value combination in parentheses. That's because in the absence of these values,
the media query is applied to all media types. In our example, the styles will apply
to all projectors.

Chapter 2

[39]

Just like existing CSS rules, media queries can conditionally load styles in a variety of
ways. So far, we have included them as links to CSS files that we would place within
the <head></head> section of our HTML. However, we can also use media queries
within CSS stylesheets themselves. For example, if we add the following code into
a stylesheet, it will make all h1 elements green, providing the device has a screen
width of 400 pixels or less:

@media screen and (max-device-width: 400px) {
 h1 { color: green }
}

We can also use the @import feature of CSS to conditionally load stylesheets
into our existing stylesheet. For example, the following code would import the
stylesheet called phone.css, providing the device was screen based and had a
maximum viewport of 360 pixels:

@import url("phone.css") screen and (max-width:360px);

Remember that using the @import feature of CSS, adds to HTTP requests
(which impacts load speed); so use this method sparingly.

What can media queries test for?
When building responsive designs, the media queries that get used most often
relate to a device's viewport width (width) and the width of the device's screen
(device-width). In my own experience, I have found little call for the other
capabilities we can test for. However, just in case the need arises, here is a list of all
capabilities that media queries can test for. Hopefully, some will pique your interest:

•	 width: The viewport width.
•	 height: The viewport height.
•	 device-width: The rendering surface's width (for our purposes, this is

typically the screen width of a device).
•	 device-height: The rendering surface's height (for our purposes, this is

typically the screen height of a device).
•	 orientation: This capability checks whether a device is portrait or

landscape in orientation.
•	 aspect-ratio: The ratio of width to height based upon the viewport

width and height. A 16:9 widescreen display can be written as
aspect-ratio: 16/9.

Media Queries: Supporting Differing Viewports

[40]

•	 device-aspect-ratio: This capability is similar to aspect-ratio but is
based upon the width and height of the device rendering surface, rather
than viewport.

•	 color: The number of bits per color component. For example, min-color:
16 will check that the device has 16-bit color.

•	 color-index: The number of entries in the color lookup table of the device.
Values must be numbers and cannot be negative.

•	 monochrome: This capability tests how many bits per pixel are in a
monochrome frame buffer. The value would be a number (integer), for
example monochrome: 2, and cannot be negative.

•	 resolution: This capability can be used to test screen or print resolution; for
example, min-resolution: 300dpi. It can also accept measurements in dots
per centimetre; for example, min-resolution: 118dpcm.

•	 scan: This can be either progressive or interlace features largely particular to
TVs. For example, a 720p HD TV (the p part of 720p indicates "progressive")
could be targeted with scan: progressive whilst a 1080i HD TV (the i part
of 1080i indicates "interlaced") could be targeted with scan: interlace.

•	 grid: This capability indicates whether or not the device is grid or
bitmap based.

All the above features, with the exception of scan and grid, can be prefixed with min
or max to create ranges. For example, consider the following code snippet:

@import url("phone.css") screen and (min-width:200px) and (max-
width:360px);

Here, a minimum (min) and maximum (max) have been applied to width to set a
range. The phone.css file will only be imported for screen devices with a minimum
viewport width of 200 pixels and a maximum viewport width of 360 pixels.

Using media queries to alter our design
As you're, no doubt, aware that CSS stands for Cascading Style Sheet. By their very
nature styles further down a cascading stylesheet override equivalent styles higher
up (unless styles higher up are more specific). We can therefore set base styles at the
beginning of a stylesheet, applicable to all versions of our design, and then override
relevant sections with media queries further on in the document. For example,
set navigation links as simple text links for the large viewport version of a design
(where it's more likely that users will be using a mouse) and then overwrite those
styles with a media query to give us a larger target area (for finger presses) for more
limited viewports.

Chapter 2

[41]

The best way to load media queries for
responsive designs
Although modern browsers are smart enough to ignore media query targeted files
that are not intended for them, it doesn't always stop them actually downloading
the files. There is therefore little advantage (apart from personal preference and/
or compartmentalization of code) in separating different media query styles into
separate files. Using separate files increases the number of HTTP requests needed
to render a page, which in turn makes the page slower to load.

The fastest JavaScript tool, Respond.js (https://github.com/scottjehl/Respond)
for adding partial media query support to Internet Explorer 8 and lower versions is
also currently unable to parse CSS referenced by the @import command. I'd therefore
recommend adding media queries styles within an existing stylesheet. For example,
in the existing stylesheet, simply add the media query using the following syntax:

@media screen and (max-width: 768px) { YOUR STYLES }

Our first responsive design
I don't know about you but I'm itching to get started with a responsive web design!
Now we understand the principles of media queries, let's test drive them and see
how they work in practice. And I have just the project we can test them on. Indulge
me a brief digression…

I like films. However, I commonly find myself disagreeing with others (perhaps that
is a contributing factor of me spending my days writing code… alone!), specifically
about what is and what isn't a good film. When the Oscar nominees are announced
I often have a strong feeling of revulsion in the pit of my stomach. I can't help
feeling that different films should be picking up the accolades. I'd like to launch
a small site called And the winner isn't…, which you'll be able to view online at
http://www.andthewinnerisnt.com/ on the Web. It will celebrate the films that
should have won, berate the ones that did (and shouldn't have) and have video clips,
quotes, images, and quizzes thrown in to illustrate I'm correct (I know, I shouldn't
need to but I'm good like that).

https://github.com/scottjehl/Respond
https://github.com/scottjehl/Respond
http://www.andthewinnerisnt.com/

Media Queries: Supporting Differing Viewports

[42]

Don't panic but our design is fixed-width
Much like the graphic designers whom I previously scolded for not considering
differing viewports, I started a graphical mockup based around a fixed, 960 pixel-
wide grid. In reality, although theoretically it would always be best to start a design
thinking about the mobile/small screen experience and building up from there, it's
going to be some years until everyone understands the benefits of that thinking.
Until then, it's likely you'll need to take existing desktop designs and "retro-fit" them
to work responsively. As this is the scenario we are likely to find ourselves in for the
foreseeable future, we will begin our process with a fixed-width design of our own.
The following screenshot shows what the unfinished fixed-width mockup looks like:

Breaking it down, it has a very simple and common structure—header, navigation,
sidebar, content, and footer. Hopefully, this is typical of the kind of structure you're
asked to build week in and week out.

In Chapter 4, HTML5 for Responsive Designs, I'll tell you why you should be using
HTML5 for your markup. However, I'm going to let this slide for now, as we're
so eager to test our new media queries skills. So, let's take our first stab at using
media queries using good ol' HTML 4 markup. Without the actual content, the
basic structure in HTML 4 markup looks like the following code:

Chapter 2

[43]

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>And the winner isn't</title>
<link href="css/main.css" rel="stylesheet" type="text/css" />
</head>

<body>

<div id="wrapper">
 <!-- the header and navigation -->
 <div id="header">
 <div id="navigation">

 navigation1
 navigation2

 </div>
 </div>
 <!-- the sidebar -->
 <div id="sidebar">
 <p>here is the sidebar</p>
 </div>
 <!-- the content -->
 <div id="content">
 <p>here is the content</p>
 </div>
 <!-- the footer -->
 <div id="footer">
 <p>Here is the footer</p>
 </div>

</div>
</body>
</html>

Media Queries: Supporting Differing Viewports

[44]

Looking at the design file in Photoshop, we can see that the header and footer are
940 pixels wide (with 10-pixels margin on either side), and the sidebar and content
occupy 220 and 700 pixels, respectively, with a 10-pixel margin on either side of each.

First off, let's set up our structural blocks (header, navigation, sidebar, content, and
footer) in the CSS. After inserting the "reset" styles, our super exciting (not!) CSS for
the page looks as follows:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 960px;
}

#header {
 margin-right: 10px;
 margin-left: 10px;
 width: 940px;
 background-color: #779307;
}

#navigation ul li {
 display: inline-block;

Chapter 2

[45]

}

#sidebar {
 margin-right: 10px;
 margin-left: 10px;
 float: left;
 background-color: #fe9c00;
 width: 220px;
}

#content {
 margin-right: 10px;
 float: right;
 margin-left: 10px;
 width: 700px;
 background-color: #dedede;
}

#footer {
 margin-right: 10px;
 margin-left: 10px;
 clear: both;
 background-color: #663300;
 width: 940px;
}

To illustrate how the structure works, besides adding the additional content
(sans images) I've also added a background color to each structural section.

Just in case you missed the memo, "reset" styles are a bunch of cover-
all CSS declarations that reset the various default styles that different
browsers render HTML elements with. They are added to the beginning
of the main stylesheet in an attempt to reset each browser's own styles
to a level playing field so that styles added afterwards in the stylesheet
have the same effect across different browsers. There is no "perfect"
set of reset styles and most developers have their own variation on the
theme. The reset styles I use in HTML 4 documents are a combination
of Eric Meyer's original (http://meyerweb.com/eric/tools/css/
reset/) and a bunch of personal preferences and tricks I have picked
up from studying the code of other incredibly clever folks such as Dan
Cederholm (http://simplebits.com). If you don't currently use reset
styles, inserting Eric's reset styles at the start of your HTML 4 document
will be a good first step. I feel there are better starting points for HTML5
documents, such as normalize.css (http://necolas.github.
com/normalize.css/) and we'll look at that in Chapter 4, HTML5 for
Responsive Designs.

http://simplebits.com
http://necolas.github.com/normalize.css/
http://necolas.github.com/normalize.css/

Media Queries: Supporting Differing Viewports

[46]

In a browser with a viewport larger than 960 pixels, the following screenshot shows
how the basic structure looks:

There are numerous other ways the same kind of fixed left/right content structure
could be achieved with CSS; you'll no doubt have your own preference. What's
universally true of them all however is that as the viewport decreases to less than 960
pixels, areas of the content at the right start getting clipped.

Responsive designs—making images as
economical as possible
For the sake of illustrating the problems with the code structure as it is, I've gone ahead
and added some of the aesthetic styling from our graphic file into the CSS. As this will
ultimately be a responsive design, I've been sure to slice up the background images in
the most economical way. For example, for the bunting flags at the top and bottom of
the design, instead of creating one long strip as a graphic file, I have sliced around two
flags. This slice will then be repeated horizontally as a background image across the
viewport to give the illusion of one long strip (no matter how wide things get). In real
terms, this makes a difference of 16 KB (the full 960 pixels wide strip was a 20 KB .png
file whilst the slice was only 4 KB) on each strip. A mobile user viewing the site over
a phone network will appreciate that economy! The following screenshot shows what
the slice looks like (zoomed to 600 percent) before export:

Chapter 2

[47]

With the background images in place and basic font sizes in place, here is how the
And the winner isn't… site looks in a browser window:

Style wise, there is still a lot of work to do. For example, the navigation menu doesn't
alternate between red and black, the main THESE SHOULD HAVE WON button in
the content area and the full info buttons from the sidebar are missing and the fonts
are all a far cry from the ones shown in the graphic file. However, all these things
are fixable with HTML5 and CSS3. Using HTML5 and CSS3 to solve these problems,
rather than merely inserting image files (as we may have done previously), will make
a website in tune with our responsive goal. Remember that we want our code and
data overheads as lean as possible to afford users with limited bandwidth speeds an
enjoyable experience.

Media Queries: Supporting Differing Viewports

[48]

Content clipping in smaller viewports
For now, let's put aside the aesthetic problems and keep focused on the fact than
when the viewport is reduced below 960 pixels, there is some seriously nasty
clipping on our work in progress home page:

Chapter 2

[49]

We've only reduced it to 673 pixels wide; imagine how bad it must look
on something like an iPhone 3GS? That only has a 320 x 480 pixel display.
Just take a look at the following screenshot:

Oh, hang on, this is embarrassing, as it looks just fine, well kind of… Of course, the
iOS Safari browser automatically draws pages onto a 980 pixel wide canvas and then
squeezes that canvas down to fit the viewport area. We still have to zoom in to see
areas but there's no content being clipped. How do we stop Safari and other mobile
browsers from doing this?

Media Queries: Supporting Differing Viewports

[50]

Stopping modern mobile browsers from
auto-resizing the page
Both iOS and Android browsers are based on WebKit (http://www.webkit.org/).
These browsers, and a growing number of others (Opera Mobile, for example), allow
the use of a specific meta viewport element to override that default canvas shrinking
trick. The <meta> tag is simply added within the <head> tags of the HTML. It can be
set to a specific width (which we could specify in pixels, for example) or as a scale,
for example 2.0 (twice the actual size). Here's an example of the viewport meta tag
set to show the browser at twice (200 percent) the actual size:

<meta name="viewport" content="initial-scale=2.0,width=device-width"
/>

Let's stick that into our HTML as done in the following code snippet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="viewport" content="initial-scale=2.0,width=device-width"
/>
<title>And the winner isn't…</title>

Now, we'll load that page up in Android and see how it looks:

http://www.webkit.org/

Chapter 2

[51]

As you can see, this isn't exactly what we're gunning for but it illustrates the point, in
a big way!

Getting the iOS and Android emulators
Although there is no substitute for testing sites on real devices,
there are emulators for Android and iOS. Android emulator
for Windows, Linux and Mac is available free by downloading
and installing the Android Software Development Kit (SDK) at
http://developer.android.com/sdk/. It's a command
line setup; so not for the faint hearted. The iOS simulator is
only available to Mac OS X users and comes as part of the
Xcode package (free from the Mac App Store). Once Xcode is
installed, you can access it from ~/Developer/Platforms/
iPhoneSimulator.platform/Developer/Applications
iOS Simulator.app.

Let's break the above <meta> tag down and understand what's going on. The
name="viewport" attribute is obvious enough. The content="initial-scale=2.0
section is then saying, scale the content to twice the size (where 0.5 would be half the
size, 3.0 would be three times the size and so on) whilst the width=device-width
part tells the browser that the width of the page should be equal to device-width.

The <meta> tag can also be used to control the amount a user can zoom in and out
of the page. This example allows users to go as large as three times the device width
and as small as half the device width:

<meta name="viewport" content="width=device-width, maximum-scale=3,
minimum-scale=0.5" />

You could also disable users from zooming at all, although as zooming is an
important accessibility tool, it's rare that it would be appropriate in practice:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

The user-scalable=no being the relevant part.

Right, we'll change the scale to 1.0, which means that the mobile browser will render
the page at 100 percent of its viewport. Setting it to the device's width means that
our page should render at 100 percent of the width of all supported mobile browsers.
Here's the <meta> tag we'll be using:

<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>

http://developer.android.com/sdk/
http://developer.android.com/sdk/

Media Queries: Supporting Differing Viewports

[52]

Looking at our page on an iPad in portrait mode now shows the content being
clipped but not as if we are looking through a pair of jam-jar spectacles! This is
how we want it at this point. This is progress, trust me!

Noticing that the viewport meta element is seeing increasing use, the
W3C is making attempts to bring the same capability into CSS. Head
over to http://dev.w3.org/csswg/css-device-adapt/ and read
all about the new @viewport declaration. The idea is that rather than
writing a <meta> tag in the <head> section of your markup, you could
write @viewport { width: 320px; } in the CSS instead. This would
set the browser width to 320 pixels. Some browsers already support the
syntax (Opera Mobile, for example), albeit by using their own vendor
prefix; for example, @-o-viewport { width: 320px; }.

http://dev.w3.org/csswg/css-device-adapt/
http://dev.w3.org/csswg/css-device-adapt/

Chapter 2

[53]

Fixing the design for different viewport
widths
With our meta viewport problem fixed, no browsers are now zooming the page,
so we can set about fixing the design for different viewports. In the CSS, we'll add
a media query for devices such as tablets (for example, iPad) that have a viewport
width of 768 pixels in portrait view (as the landscape viewport width is 1024 pixels,
it renders the page fine when loaded in Landscape view).

@media screen and (max-width: 768px) {
 #wrapper {
 width: 768px;
 }
 #header,#footer,#navigation {
 width: 748px;
 }
}

Our media query is re-sizing the width of the wrapper, header, footer, and
navigation elements if the viewport size is no larger than 768 pixels. The
following screenshot shows how this looks like on our iPad:

Media Queries: Supporting Differing Viewports

[54]

I'm actually quite encouraged by that. The content now fits on the iPad display (or
any other viewport no larger than 768 pixels) with no clipping. However, we need to
fix the Navigation area as the links are extending off the background image and the
main content area is floating below the sidebar (as it's too wide to fit in the available
space). Let's amend our media query in the CSS, as demonstrated in the following
code snippet:

@media screen and (max-width: 768px) {
 #wrapper {
 width: 768px;
 }
 #header,#footer,#navigation {
 width: 748px;
 }
 #content,#sidebar {
 padding-right: 10px;
 padding-left: 10px;
 width: 728px;
 }
}

Now the sidebar and content area are filling the entire page and are nicely spaced
with a little padding on either side. However, this isn't very compelling viewing. I
want the content first and the sidebar second (by it's nature it's a secondary area of
interest). I've made another schoolboy error here, if I'm attempting to approach this
design with a truly responsive design methodology.

With responsive designs, content should
always come first
We want to retain as many features of our design across multiple platforms and
viewports (rather than hiding certain parts with display: none or similar) but
it's also important to consider the order in which things appear. At present, due to
the order of the sidebar and main content sections of our markup, the sidebar will
always want to display before the main content. It's obvious that a user with a more
limited viewport should get the main content before the sidebar, otherwise they'll be
seeing tangentially related content before the main content itself.

Chapter 2

[55]

We could (and perhaps should) move our content above our navigation area, too.
So that those with the smallest viewports get the content before anything else. This
would certainly be the logical continuation of adhering to a "content first" maxim.
However, in most instances, we'd like some navigation atop each page, so I'm
happier simply swapping the order of the sidebar and content area in my HTML:
making the content section come before the sidebar. For example, consider the
following code:

<div id="sidebar">
 <p>here is the sidebar</p>
</div>
<div id="content">
 <p>here is the content</p>
</div>

Instead of the preceding code, we have code as follows:

<div id="content">
 <p>here is the content</p>
</div>
<div id="sidebar">
 <p>here is the sidebar</p>
</div>

Although we have altered the markup, the page still looks exactly the same in
larger viewports due to the float:left and float:right properties on the sidebar
and content areas. However, in the iPad, our content now appears first, with our
secondary content (the sidebar) afterwards.

However, with our markup structured in the correct order I've also set about adding
and altering more styles, specific to the 768 pixel wide viewport. This is what the
media query now looks like:

@media screen and (max-width: 768px) {
 #wrapper,#header,#footer,#navigation {
 width: 768px;
 margin: 0px;
 }
 #logo {
 text-align:center;
 }
 #navigation {
 text-align: center;
 background-image: none;

Media Queries: Supporting Differing Viewports

[56]

 border-top-color: #bfbfbf;
 border-top-style: double;
 border-top-width: 4px;
 padding-top: 20px;
 }
 #navigation ul li a {
 background-color: #dedede;
 line-height: 60px;
 font-size: 40px;
 }
 #content, #sidebar {
 margin-top: 20px;
 padding-right: 10px;
 padding-left: 10px;
 width: 728px;
 }
 .oscarMain {
 margin-right: 30px;
 margin-top: 0px;
 width: 150px;
 height: 394px;
 }
 #sidebar {
 border-right: none;
 border-top: 2px solid #e8e8e8;
 padding-top: 20px;
 margin-bottom: 20px;
 }
 .sideBlock {
 width: 46%;
 float: left;
 }
 .overHyped {
 margin-top: 0px;
 margin-left: 50px;
 }
}

Remember, the styles added here will only affect screen devices with a viewport of
768 pixels or less. Larger viewports will ignore them. Plus, because these styles are
after any existing styles, they will override them where relevant. The upshot being
that larger viewports get the design they got before. Devices with a 768 pixel wide
viewport, look as shown in the following screenshot:

Chapter 2

[57]

It goes without saying, we're not going to win any design awards here but with just
a few lines of CSS code within a media query, we have created an entirely different
layout for a different viewport. What did we do?

First off, we reset all the content areas to the full width of the media query, as
demonstrated in the following code snippet:

#wrapper,#header,#footer,#navigation {
 width: 768px;
 margin: 0px;
}

Media Queries: Supporting Differing Viewports

[58]

Then it was merely a matter of adding styles to alter the aesthetic layout of the
elements. For example, the following code snippet changes the navigation size,
layout, and background, so that it would be easier for tablet users (or any users
with a viewport of 768 pixels or less) to select a navigation item:

#navigation {
 text-align: center;
 background-image: none;
 border-top-color: #bfbfbf;
 border-top-style: double;
 border-top-width: 4px;
 padding-top: 20px;
}
#navigation ul li a {
 background-color: #dedede;
 line-height: 60px;
 font-size: 40px;
}

We now have exactly the same content displayed with a different layout depending
upon viewport size. Media queries are good, no? Let's have a party. While you fetch
the champagne, I'll just take a look on my iPhone to see how it looks there… You can
have a look at it in the following screenshot:

Chapter 2

[59]

Media queries—only part of the solution
Oh… best put that ice back in the freezer. Clearly our work is far from over; that
looks horrible on the smaller 320 pixel wide viewport of our iPhone. Our media
query is doing exactly what it should, applying styles dependent upon the features
of our device. The problem is however, that the media query covers a very narrow
spectrum of viewports. Anything with a viewport under 768 pixels is going to
experience clipping and anything between 768 and 960 pixels will experience
clipping as it will get the non-media query version of the CSS styles which, as we
already know, doesn't adapt once we take it below 960 pixels wide (your author rests
his head in his hands and lets out a long sigh).

We need a fluid layout
Using media queries alone to change a design is fine if we have a specific known
target device; we've already seen how easy it is to adapt a device to the iPad. But
this strategy has severe shortcomings; namely, it isn't really future-proof. At present,
when we resize our viewport, the design snaps at the points that the media queries
intervene and the shape of our layout changes. However, it then remains static until
the next viewport "break point" is reached. We need something better than this.
Writing CSS styles specific to each and every viewport permutation doesn't make
allowances for future devices and a really great design is one with some degree of
future proofing built in. At this point our solution is incomplete. This is more of an
adaptive design rather than the truly responsive one we want. We need our design
to flex before it snaps. To make that happen we need to move from a rigid and fixed
layout to a fluid layout.

Media Queries: Supporting Differing Viewports

[60]

Summary
In this chapter, we've learned what CSS3 media queries are, how to include them in
our CSS files, and how they can help our quest to create a responsive web design.
We've also learned how to make modern mobile browsers render our pages in
the same manner as their desktop counterparts and touched upon the need to
consider a "content first" policy when structuring our markup. We've also learned
the data economies that can be made when we use images in our design in the most
economical way.

However, we've also learned that media queries can only provide an adaptable web
design, not a truly responsive one. Media queries are an essential component in a
responsive design but a fluid layout that allows our design to flex between the break
points that the media queries handle is also essential. Creating a fluid base for our
layout to smooth the transition between our media query break points is what we'll
be covering in the next chapter.

Embracing Fluid Layouts
When I first started making websites at the end of the 1990s, layout structures were
table based. More often than not, all the sectioning up of screen real estate was done
with percentages. For example, a left navigation column might be 20 percent whilst
the main content area would be 80 percent. There weren't the vast differences in
browser viewports we see today so these layouts worked and scaled well across
the limited range of viewports. Nobody much cared that sentences looked a little
different on one screen compared to another. However, as CSS-based designs took
over, it enabled web-based designs to more closely mimic print. With that transition,
for many (including myself), proportionally based layouts dwindled for many years
in favor of their rigid, pixel-based counterparts.

Like all great designs and solutions, they come back around. The mini car, permed
hair (I wish!), and flared jeans have all made their comebacks over the years. Now,
it's time for proportional layouts to make a re-appearance.

In this chapter, we shall:

•	 Learn why proportional layouts are necessary for responsive design
•	 Convert pixel-based element widths to proportional percentages
•	 Convert pixel-based typography sizes to their em-based equivalent
•	 Understand how to find the context for any element
•	 Learn how to make images scale fluidly
•	 Learn how to serve different images to different screen sizes
•	 Understand how media queries can work with fluid images and layouts
•	 Create a responsive layout from scratch using a CSS grid system

Embracing Fluid Layouts

[62]

Fixed layouts aren't future proof
As I mentioned, since the "table layout" days, I've had little call to use proportional
layouts. Typically, I've been asked to code HTML and CSS that best matches a
design composite that almost always measures 950-1000 pixels wide. If the layout
was ever built with a proportional width (say, 90 percent), the complaints would
have arrived quickly, "It looks different on my monitor". Web pages with fixed,
pixel-based dimensions were the easiest way to match the fixed, pixel-based
dimensions of the composite.

Even in more recent times, when using media queries to produce a tweaked version
of a layout, specific to a certain popular device such as an iPad or iPhone (as we did
in Chapter 2, Media Queries: Supporting Differing Viewports), the dimensions could
still be pixel-based as the viewport was known. However, whilst many might enjoy
the possibility of re-charging a client each time they need a site tweaked for today's
newest gizmo, it's not exactly a future proof way of building web pages. As more
and more varied viewports are being introduced, we need some way of provisioning
for the unknown.

Why proportional layouts are essential
for responsive designs
Whist media queries are incredibly powerful we are now aware of some limitations.
Any fixed width design, using only media queries to adapt for different viewports
will merely "snap" from one set of CSS media query rules to the next with no linear
progression between the two. From our own experience in Chapter 2, Media Queries:
Supporting Differing Viewports, where a viewport fell between the fixed-width ranges
of our media queries (as may be the case for future unknown devices and their
viewports) the design required horizontal scrolling in the browser. Instead, we want
to create a design that flexes and looks good on all viewports, not just particular ones
specified in a media query. I'll cut to the chase. (See what I did there? It's a film-based
saying to match our film-based site… No? I'll get my coat…) We need to switch our
fixed, pixel-based layout to a fluid proportional one. This will enable elements to
scale relative to the viewport until one media query or another modifies the styling.

Chapter 3

[63]

The symbiosis of proportional layout and media queries
I've already mentioned Ethan Marcotte's article on Responsive Web
Design at A List Apart (http://www.alistapart.com/articles/
responsive-web-design/). Whilst the tools he used (fluid layout
and images, and media queries) were not new, the application and
embodiment of the ideas into a single coherent methodology were.
For many working in web design, his article was the genesis of new
possibilities. Indeed, new ways to create web pages that offered the
best of both worlds; a way to have a fluid flexible design based on a
proportional layout, whilst being able to limit how far elements could flex
with media queries. Putting them together forms the core of a responsive
design, creating something truly greater than the sum of its parts.

Amending a design from fixed to
proportional layout
Typically, for the foreseeable future, any design composite you receive or create will
have fixed dimensions. Currently we measure (in pixels) the element sizes, margins,
and so on within the graphics files from Photoshop, Fireworks, and so on. We then
punch these dimensions directly into our CSS. The same goes for text sizes. We click
on a text element in our image editor of choice, note the font size, and then enter it
(again, often measured in pixels) into the relevant CSS rule. So how do we convert
our fixed dimensions into proportional ones?

A formula to remember
It's possible I'm coming off too much of an Ethan Marcotte fan boy, but at this point
it's essential that I provide another large tip of the hat (it should probably be a
bow, maybe even a kneel) to him. In Dan Cederholm's excellent book, Handcrafted
CSS, Mr. Marcotte contributed a chapter covering fluid grids. In it, he provided a
simple and consistent formula for converting fixed width pixels into proportional
percentages:

target ÷ context = result

Smells a bit like an equation to you? Fear not, when creating a responsive design,
this formula soon becomes your new best friend. Rather than talk any more theory,
let's put the formula to work converting the current fixed dimension for the And the
winner isn't... site to a fluid percentage based layout.

Embracing Fluid Layouts

[64]

If you remember, back in Chapter 2, Media Queries: Supporting Differing Viewports, we
established that the basic markup structure of our site looked like this:

<div id="wrapper">
 <!-- the header and navigation -->
 <div id="header">
 <div id="navigation">

 navigation1
 navigation2

 </div>
 </div>
 <!-- the sidebar -->
 <div id="sidebar">
 <p>here is the sidebar</p>
 </div>
 <!-- the content -->
 <div id="content">
 <p>here is the content</p>
 </div>
 <!-- the footer -->
 <div id="footer">
 <p>Here is the footer</p>
 </div>
</div>

Content was later added but what's important to note here is the CSS we are
currently using to set the widths of the main structural (header, navigation,
sidebar, content, and footer) elements. Note, I've omitted many of the styling
rules so we can concentrate on structure:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 960px;
}

#header {
 margin-right: 10px;
 margin-left: 10px;
 width: 940px;
}

#navigation {

Chapter 3

[63]

 padding-bottom: 25px;
 margin-top: 26px;
 margin-left: -10px;
 padding-right: 10px;
 padding-left: 10px;
 width: 940px;
}

#navigation ul li {
 display: inline-block;
}

#content {
 margin-top: 58px;
 margin-right: 10px;
 float: right;
 width: 698px;
}

#sidebar {
 border-right-color: #e8e8e8;
 border-right-style: solid;
 border-right-width: 2px;
 margin-top: 58px;
 padding-right: 10px;
 margin-right: 10px;
 margin-left: 10px;
 float: left;
 width: 220px;
}
#footer {
 float: left;
 margin-top: 20px;
 margin-right: 10px;
 margin-left: 10px;
 clear: both;
 width: 940px;
}

All the values are currently set using pixels. Let's work from the outermost element
and change them to proportional percentages using the target ÷ context = result
formula.

Embracing Fluid Layouts

[66]

All our content currently sits within a div with an ID of #wrapper. You can see by the
CSS above that it's set with automatic margin and a width of 960 px. As the outermost
div, how do we define what percentage of the viewport width it should be?

Setting a context for proportional elements
We need something to "hold" and become the context for all the proportional
elements (content, sidebar, footer, and so on) we intend to contain within our design.
We therefore need to set a proportional value for the width that the #wrapper should
be in relation to the viewport size. For now, let's knock off a naught and roll with 96
percent and see what happens. Here's the amended rule for #wrapper:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 96%; /* Holding outermost DIV */
}

And here's how it looks in the browser window:

Chapter 3

[63]

So far, so good! 96 percent actually works quite well here although we could
have opted for 100 or 90 percents—whatever we felt and set the design within the
viewport in the most aesthetically pleasing manner.

Now changing from fixed to proportional gets a little more complicated as we move
inwards. Let's look at the header section first. Consider the formula again, target
÷ context = result. Our #header div (the target) sits within the #wrapper div (the
context). Therefore, we take our #header (the target) width of 940 pixels, divide
it by the width of the context (the #wrapper), which was 960 px and our result is
.979166667. We can turn this into a percentage by moving the decimal place two
digits to the right and we now have a percentage width for the header of 97.9166667.
Let's add that to our CSS:

#header {
 margin-right: 10px;
 margin-left: 10px;
 width: 97.9166667%; /* 940 ÷ 960 */
}

And as both the #navigation and the #footer divs also have the same declared
width, we can swap both of those pixel values to the same percentage-based rule.

Finally, before we take a peek in the browser, let's turn to the #content and
#sidebar div's. As the context is still the same (960 px) we just need to divide our
target size by that figure. Our #content is currently 698 px so divide that value by
960 and our answer is .727083333. Move the decimal place and we have a result of
72.7083333 percent—that's the width of the #content div in percentage terms. Our
sidebar is currently 220 px but there's also a 2 px border to consider. I don't want
the thickness of the right-hand border to expand or contract proportionately so that
will stay at 2 px. Because of that I need to subtract some size from the width of the
sidebar. So in the case of this sidebar, I have subtracted 2 px from the sidebar width
and then performed the same calculation. I've divided the target (now, 218 px) by
the context (960 px) and the answer is .227083333. Shift the decimal and we have a
result of 22.7083333 percent for the sidebar. After amending all the pixel widths to
percentages, the following is what the relevant CSS looks like:

#wrapper {
 margin-right: auto;
 margin-left: auto;

 width: 96%; /* Holding outermost DIV */
}

#header {
 margin-right: 10px;
 margin-left: 10px;

Embracing Fluid Layouts

[68]

 width: 97.9166667%; /* 940 ÷ 960 */
}

#navigation {
 padding-bottom: 25px;
 margin-top: 26px;
 margin-left: -10px;
 padding-right: 10px;
 padding-left: 10px;
 width: 72.7083333%; /* 698 ÷ 960 */
}

#navigation ul li {
 display: inline-block;
}

#content {
 margin-top: 58px;
 margin-right: 10px;
 float: right;
 width: 72.7083333%; /* 698 ÷ 960 */
}

#sidebar {
 border-right-color: #e8e8e8;
 border-right-style: solid;
 border-right-width: 2px;
 margin-top: 58px;
 margin-right: 10px;
 margin-left: 10px;
 float: left;
 width: 22.7083333%; /* 218 ÷ 960 */
}
#footer {
 float: left;
 margin-top: 20px;
 margin-right: 10px;
 margin-left: 10px;
 clear: both;
 width: 97.9166667%; /* 940 ÷ 960 */
}

Chapter 3

[63]

The following screenshot shows what it looks like in Firefox with the viewport
around 1000 px wide:

All good so far. Now, let's go ahead and replace all the 10 px instances used for
padding and margin throughout with their proportional equivalent using the same
target ÷ context = result formula. As all the 10 px widths have the same 960 px context,
the width in percentage terms is 1.0416667 percent (10 ÷ 960).

Embracing Fluid Layouts

[70]

Can't we just round the numbers?
Some critics of responsive design techniques (for example, see http://
tripleodeon.com/2010/10/not-a-mobile-web-merely-a-
320px-wide-one/) argue that entering numbers such as .550724638 em
into stylesheets is daft. You may wonder yourself, why aren't these simply
rounded to something more sensible? The counter argument is that it's a
more accurate answer to the question being asked. Providing a browser
with the most accurate answer should make it more able to display that
answer in the most accurate manner. As a related aside, if you stayed
awake through more than a couple math classes I'm sure you've heard
of the Golden Ratio (http://en.wikipedia.org/wiki/Golden_
ratio)? The mathematical ratio, found and used throughout almost every
discipline we know, is expressed as approximately 1:1.61803398874989 (if
you want it to 10,000 decimal places, knock yourself out here http://
www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/
phi10000dps.txt). Not a neat number by any means but quite an
important one. If the Golden Ratio can suffer such precise measurements,
I'm inclined to believe our web designs can too.

Everything still looks fine at the same viewport size. However, the navigation
area isn't behaving. If I bring the viewport size in, just a little, the links start to
span two lines:

http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one/
http://tripleodeon.com/2010/10/not-a-mobile-web-merely-a-320px-wide-one/

Chapter 3

[63]

Furthermore, if I expand my viewport, the margin between the links doesn't increase
proportionally. Let's take a look at the CSS associated with the navigation and try
and figure out why:

#navigation {
 padding-bottom: 25px;
 margin-top: 26px;
 margin-left: -1.0416667%; /* 10 ÷ 960 */
 padding-right: 1.0416667%; /* 10 ÷ 960 */
 padding-left: 1.0416667%; /* 10 ÷ 960 */
 width: 97.9166667%; /* 940 ÷ 960 */
 background-repeat: repeat-x;
 background-image: url(../img/atwiNavBg.png);
 border-bottom-color: #bfbfbf;
 border-bottom-style: double; border-bottom-width: 4px;
}

#navigation ul li {
 display: inline-block;
}

#navigation ul li a {
 height: 42px;
 line-height: 42px;
 margin-right: 25px;
 text-decoration: none;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 27px;
 color: black;
}

Well, on first glance, looks like our third rule there, the #navigation ul li a, still has
a pixel-based margin of 25 px. Let's go ahead and fix that with our trusty formula. As
the #navigation div is based on 940 px our result should be 2.6595745 percent. So
we'll change that rule to be as follows:

#navigation ul li a {
 height: 42px;
 line-height: 42px;
 margin-right: 2.6595745%; /* 25 ÷ 940 */
 text-decoration: none;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 27px;
 color: black;
}

Embracing Fluid Layouts

[72]

That was easy enough! Let's just check all is OK in the browser…

Oh, wait, that isn't exactly what we were gunning for. OK, the links aren't spanning
two lines but we don't have the correct proportional margin value, clearly. The
navigation links look like one big word, and not one I can find in my dictionary…

It's always important to remember the context
Considering our formula again (target ÷ context = result), it's possible to
understand why this issue is occurring. Our problem here is the context.
Here's the relevant markup:

<div id="navigation">

 Why?

Chapter 3

[63]

 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</div>

As you can see our links sit within the tags. They are the
context for our proportional margin. Looking at the CSS for the tags, we
can see there are no width values set:

#navigation ul li { display: inline-block; }

As if often the case, it turns out that there are various ways of solving this problem.
We could add an explicit width to the tags but that would either have to be
fixed-width pixels or a percentage of the containing element (the navigation div),
neither of which allows any flexibility for the text that ultimately sits within them.

We could instead amend the CSS for the tags, changing inline-block to be
simply inline:

#navigation ul li {
 display: inline;
}

Opting for display: inline; (which stops the elements behaving like block
level elements), also makes the navigation render horizontally in earlier versions
of Internet Explorer (versions 6 and 7) that have problems with inline-block.
However, I'm a fan of inline-block as it gives greater control over the margins and
padding for modern browsers so instead I'm going to leave the tags as inline-
blocks (and perhaps add an override style for IE 6 and IE 7, later) and instead move
my percentage based margin rule from the <a> tag (which has no explicit context) to
the containing block instead. Here's what the amended rules now look like:

#navigation ul li {
 display: inline-block;
 margin-right: 2.6595745%; /* 25 ÷ 940 */
}

#navigation ul li a {
 height: 42px;
 line-height: 42px;
 text-decoration: none;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 27px;
 color: black;
}

Embracing Fluid Layouts

[74]

And the following screenshot shows how it looks in the browser with a 1200 px
wide viewport:

So the navigation is getting there now, but I still have the problem of the navigation
links spanning two lines as the viewport gets smaller, right until I get below 768 px
wide when the media query we wrote in Chapter 2, Media Queries: Supporting Differing
Viewports, then overrides the current navigation styles. Before we start fixing the
navigation I'm going to switch all my typography sizes from fixed size pixels to the
proportional unit, "ems". Once that's done we'll look at the other elephant in the
room, getting our images to scale with the design.

Chapter 3

[63]

Using ems rather than pixels for
typography
In years gone by, web designers primarily used ems for sizing typography, rather
than pixels, because earlier versions of Internet Explorer were unable to zoom text
set in pixels. For some time, modern browsers have been able to zoom text on screen,
even if the size values of the text were declared in pixels. So, why is using ems
instead of pixels required or preferable? Here are two obvious reasons: firstly anyone
still using Internet Explorer 6 (yes, those two) automatically gets the ability to zoom
the text and secondly it makes life for you, the designer/developer, much easier.
The size of an em is in relation to the size of its context. If we set a font size of 100
percent to our <body> tag and style all further typography using ems, they will all
be affected by that initial declaration. The upshot of this being that if, having
completed all the necessary typesetting, a client asks for all our fonts to be a little
bigger we can merely change the body font size and all other typography changes
in proportion.

Using our same target ÷ context = result formula, I'm going to convert every pixel
based font size to ems. It's worth knowing that all modern desktop browsers use
16 px as the default font size (unless explicitly stated otherwise). Therefore, from
the outset, applying any of the following rules to the body tag will provide the
same result:

font-size: 100%;
font-size: 16px;
font-size: 1em;

As an example, the first pixel-based font size in our stylesheet controls the site's title,
AND THE WINNER ISN'T… at top-left:

#logo {
 display: block;
 padding-top: 75px;
 color: #0d0c0c;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;

 font-size: 48px;
}

#logo span { color: #dfdada; }

Embracing Fluid Layouts

[76]

Therefore, 48 ÷ 16 = 3. So our style changes to the following:

#logo {
 display: block;
 padding-top: 75px;
 color: #0d0c0c;
 text-transform: uppercase;
 font-family: Arial, "Lucida Grande", Verdana, sans-serif;
 font-size: 3em; /* 48 ÷ 16 = 3*/
}

You can apply this same logic throughout. If at any point things go haywire, it's
probable the context for your target has changed. For example, consider the <h1>
within the markup of our page:

<h1>Every year when I watch the Oscars I'm annoyed...</
h1>

Our new em-based CSS looks like this:

#content h1 {
 font-family: Arial, Helvetica, Verdana, sans-serif;
 text-transform: uppercase;
 font-size: 4.3125em; } /* 69 ÷ 16 */

#content h1 span {
 display: block;
 line-height: 1.052631579em; /* 40 ÷ 38 */
 color: #757474;
 font-size: .550724638em; /* 38 ÷ 69 */
}

You can see here that the font size (which was 38 px) of the element is in
relation to the parent element (which was 69 px). Furthermore, the line-height
(which was 40 px) is set in relation to the font itself (which was 38 px).

What on earth is an em?
The term em is simply a way of expressing the letter "M" in written
form and is pronounced as such. Historically, the letter "M" was used to
establish the size of a given font due to the letter "M" being the largest
(widest) of the letters. Nowadays, em as a measurement defines the
proportion of a given letter's width and height with respect to the point
size of a given font.

Chapter 3

[63]

So our structure is now resizing and we've switched our pixel-based type to ems.
However, we still have to figure out how to scale images as the viewport resizes so
let's look at that now.

Fluid images
Making images scale with a fluid layout can be achieved simply for modern
browsers (including IE 7+). It's as simple as declaring the following in the CSS:

img {
 max-width: 100%;
}

This makes any images automatically scale to up to 100 percent of their containing
element. Furthermore, the same attribute and property can be applied to other
media. For example:

img,object,video,embed {
 max-width: 100%;
}

And they will scale too, apart from a few notable exceptions such as <iframe>
videos from YouTube but we'll wrestle those into submission in Chapter 4, HTML5 for
Responsive Designs. For now though, we'll concentrate on images as the principles are
the same, regardless of the media.

There are some important considerations in using this approach. Firstly, it requires
some forward planning—the images inserted must be large enough to scale to larger
viewport sizes. This leads to a further, perhaps more important consideration. No
matter the viewport size or device viewing the site, they will still have to download
the large images, even though on certain devices the viewport may only need to see
an image 25 percent of its actual size. This is an important bandwidth consideration
in some instances so we'll revisit this second problem shortly. For now, let's just get
our images scaling.

Making images scale with the viewport
Consider our sidebar with the posters of two cracking movies and two absolute
stinkers (this isn't up for discussion). The markup is currently as follows:

<!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">

Embracing Fluid Layouts

[78]

 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
width="99" height="135" />
 <img src="img/wyattEarp.jpg" alt="Wyatt Earp"
width="99" height="135" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
width="99" height="135" />
 <img src="img/kingKong.jpg" alt="King Kong"
width="99" height="135" />
 </div>
 </div>

Although I've added the max-width: 100% declaration to the img element in my
CSS, nothing has changed and the images aren't scaling as I expand the viewport:

Chapter 3

[63]

The reason here is that I've explicitly stated both the width and height of my images
in the markup:

<img src="img/wyattEarp.jpg" alt="Wyatt Earp" width="99" height="135"
/>

Another schoolboy error! So I'll amend the markup associated with the images,
removing the height and width attributes:

Let's see what that does for us by refreshing the browser window:

Well, that's certainly working! But that's introduced a further problem. Because the
images are scaling to fill up to 100 percent of the width of their containing element,
they're each filling the sidebar. As ever, there are various ways to fix this…

Specific rules for specific images
I could add an additional class to each image as done in the following code snippet:

Embracing Fluid Layouts

[80]

And then set a specific rule for the width. However, instead I'm going to leave the
markup as is and use CSS specificity to overrule the existing max-width rule with a
further, more specific rule for my sidebar images:

img {
 max-width: 100%;
}

.sideBlock img {
 max-width: 45%;
}

The following screenshot shows how things look in the browser now:

Using CSS specificity in this way allows us to add additional control to the width of
any other images or media, too. Also, in Chapter 5, CSS3: Selectors, Typography, and
Color Modes we'll look at how CSS3's powerful new selectors let us target almost any
element without the need for extra markup or introducing JavaScript frameworks
such as jQuery to do our dirty work.

Chapter 3

[63]

For the sidebar images I decided on a width of 45 percent simply because I know
that I need to add a little margin between the images later, and so having two images
totaling 90 percent of the width gives me a little room (10 percent) to play with.

Now that the sidebar images are working, I'll also remove the width and height
attributes on the Oscar statue image in the markup. However, unless I set a
proportional width value for it, it's not going to scale so I've tweaked the associated
CSS to set a proportional width using good ol' trusty target ÷ context = result.

.oscarMain {
 float: left;
 margin-top: -28px;
 width: 28.9398281%; /* 698 ÷ 202 */
}

Putting the brakes on fluid images
So now the images are scaling nicely as the viewport expands and contracts.
However, if by expanding the viewport the image scales beyond its native size,
things get very ugly. Take a look at Oscar in the following screenshot, with the
viewport up to 1900 px:

Embracing Fluid Layouts

[82]

The oscar.png image is actually 202 px wide. However, with the viewport over 1900
px wide and the image scaling to fit, it's actually displaying over 300 px wide. We
can easily "put the brakes on" this image by setting another more specific rule:

.oscarMain {
 float: left;
 margin-top: -28px;
 width: 28.9398281%; /* 698 ÷ 202 */
 max-width: 202px;
}

That would let the oscar.png image scale because of the more general image rule
but never go beyond the more specific max-width property set above. Here's how
the page looks with this rule set:

The incredibly versatile max-width property
Another tack to limit things expanding limitlessly would be to set a max-width
property on our entire #wrapper div like this:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 96%; /* Holding outermost DIV */
 max-width: 1414px;
}

Chapter 3

[63]

This means the design will scale to 96 percent of the viewport but will never expand
beyond 1414 px wide (I settled on 1414 px as on most modern browsers it cuts the
bunting flags off at the end of a flag rather than halfway through one). The following
screenshot shows how it looks like with a viewport of around 1900 px:

Obviously these are merely options. It, however, proves the versatility of a fluid grid
and how we can control the flow with just a few specific declarations.

Serving different images for different
screen sizes
We have our images resizing nicely and we now understand how we can limit the
display size of specific images should we choose to. However, earlier in the chapter
we noted the inherent problem with scaling images. They must be physically larger
than they are displayed in order to render well. If they aren't, they start to look a
mess. Because of this, images, in terms of file size, are almost always bigger than they
need to be given the likely display size.

Embracing Fluid Layouts

[84]

Various people have tackled the problem, attempting to provide smaller images to
smaller screens. The first notable example was the Filament Group's "Responsive
Images" (http://filamentgroup.com/lab/responsive_images_experimenting_
with_context_aware_image_sizing/). However, recently, I've switched to Matt
Wilcox's "Adaptive Images" (http://adaptive-images.com). The Filament Group's
solution required the image related markup to be altered. Matt's solution doesn't
and automatically creates the (smaller) resized images based on the full size image
already specified in the markup. This solution therefore allows images to be resized
and served to the user as needed based upon a number of screen size break points.
Let's jump in and get Adaptive Images up and running.

Setting up Adaptive Images
The Adaptive Images solution requires Apache 2, PHP 5.x, and GD Lib. So you'll
need to be developing on an appropriate server to see the benefits. So, go ahead,
download the .zip file and let's get started:

http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://filamentgroup.com/lab/responsive_images_experimenting_with_context_aware_image_sizing/
http://adaptive-images.com

Chapter 3

[63]

Extract the content of the ZIP file and copy the adaptive-images.php and
.htaccess files into the root directory of your site. If you are already using an
.htaccess file in your site's root directory, do not overwrite it. Instead read the
additional information in the instructions.htm file included in the download.

Now create a folder in the root of your site called ai-cache.

Use your favourite FTP client to set write permissions of 777.

Embracing Fluid Layouts

[86]

Now copy the following JavaScript into the <head> tag of each page that needs
adaptive images:

<script>document.cookie='resolution='+Math.max(screen.width,screen.
height)+'; path=/';</script>

Note that if you're not using HTML5 (we'll be changing to HTML5 in the next
chapter), if you want the page to validate, you'll need to add the type attribute. So
the script should be as follows:

<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>

It's important that the JavaScript is in the head (preferably the first piece of script)
because it needs to work before the page has finished loading, and before any images
have been requested. Here it is added to the <head> section of our site in progress:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>
<title>And the winner isn't…</title>
<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>
<link href="css/main.css" rel="stylesheet" type="text/css" />
</head>

Put background images somewhere else
In the past, I've typically placed all my images (both those used for background CSS
elements and inline images inserted in the markup) in a single folder such as images
or img. However, if using Adaptive Images, it's advisable that images to be used
with CSS as background images (or any other images you don't want to be re-sized)
be placed in a different directory. Adaptive Images by default defines a folder called
assets to keep images you don't want resizing within. Therefore, if you want any
images left alone, keep them there. If you'd like to use a different folder (or more
than one) you can amend the .htaccess file as follows:

<IfModule mod_rewrite.c>
 Options +FollowSymlinks
 RewriteEngine On

Chapter 3

[63]

 # Adaptive-Images --

 RewriteCond %{REQUEST_URI} !assets
 RewriteCond %{REQUEST_URI} !bkg

 # Send any GIF, JPG, or PNG request that IS NOT stored inside one of
the above directories
 # to adaptive-images.php so we can select appropriately sized
versions
 RewriteRule \.(?:jpe?g|gif|png)$ adaptive-images.php

 # END Adaptive-Images --

</IfModule>

In this example, we have specified that we don't want images within assets or
bkg adapting. Conversely, should you wish to explicitly state that you only want
images within certain folders to be adapted, you can omit the exclamation mark
from the rule. For example, if I only wanted images in a subfolder of my site, called
andthewinnerisnt, I would edit the .htaccess file as follows:

<IfModule mod_rewrite.c>
 Options +FollowSymlinks
 RewriteEngine On

 # Adaptive-Images --

 RewriteCond %{REQUEST_URI} andthewinnerisnt

 # Send any GIF, JPG, or PNG request that IS NOT stored inside one of
the above directories
 # to adaptive-images.php so we can select appropriately sized
versions
 RewriteRule \.(?:jpe?g|gif|png)$ adaptive-images.php

 # END Adaptive-Images --

</IfModule>

Embracing Fluid Layouts

[88]

That is all there is to it. The easiest way to check that it's up and running is to
insert a large image into a page, and then visit the page with a smart phone. If
you check the contents of your ai-cache folder with an FTP program you should
see files and folders within named breakpoint folders, for example, 480 (see the
following screenshot):

Adaptive Images isn't restricted to static sites. It can also be used alongside Content
Management Systems and there are also workarounds for when JavaScript is
unavailable. With Adaptive Images, there is a way to serve entirely different images
based upon screen size, saving bandwidth overheads for devices that wouldn't see
the benefit of the default full size images.

Chapter 3

[63]

Where fluid grids and media queries
come together
If you remember, earlier in the chapter, our navigation links were still spanning
multiple lines at certain viewport widths. We can fix this problem with media
queries. If our links fall apart at 1060 px and work again at 768 px (where our
earlier media query takes over), let's set some additional font styles for the
ranges in-between:

@media screen and (min-width: 1001px) and (max-width: 1080px) { 
#navigation ul li a { font-size: 1.4em; }
}
@media screen and (min-width: 805px) and (max-width: 1000px) {
 #navigation ul li a { font-size: 1.25em; }
}
@media screen and (min-width: 769px) and (max-width: 804px) {
 #navigation ul li a { font-size: 1.1em; }
}

As you can see, we're changing the font size based upon the viewport width and the
result is a set of navigation links that always sit on one line, throughout the range of
769 px to infinity. Evidence again of the symbiosis between media queries and fluid
layouts—media queries limit the shortfalls of a fluid layout and a fluid layout eases
the change from one set of defined styles within a media query to another.

CSS Grid systems
CSS Grid systems/frameworks are a potentially divisive subject. Some designers
swear by them, others swear at them. In a bid to minimize hate mail, I'm going to say
I sit entirely on the fence. Whilst I can understand why some developers think they
are superfluous and in certain instances create extraneous code, I can also appreciate
their value for rapidly prototyping layouts.

Here are a few CSS frameworks that offer varying degrees of "responsive" support:

•	 Semantic (http://semantic.gs)
•	 Skeleton (http://getskeleton.com)
•	 Less Framework (http://lessframework.com)
•	 1140 CSS Grid (http://cssgrid.net)
•	 Columnal (http://www.columnal.com)

Of these, I personally favor the Columnal grid system as it has a fluid grid built-in
alongside media queries and also uses similar CSS classes as 960.gs, the popular
fixed-width grid system that most developers and designers are familiar with.

http://cssgrid.net/
http://www.columnal.com

Embracing Fluid Layouts

[90]

Alpha, Omega, and other common grid classes
Many CSS grid systems use specific CSS classes to perform everyday
layout tasks. The row and container classes are self-explanatory but
there are often many more. Therefore, always check any grid system's
documentation for any other classes that will make life easier. For
example, other typical de facto classes used in CSS Grid systems are
alpha and omega—for the first and last items in a row respectively (the
alpha and omega classes remove padding or margin) and .col_x where
x is the number for the amount of columns the item should span (for
example, col_6 for six columns).

Rapidly building our site with a Grid system
Let's suppose we hadn't already built our fluid grid, nor had we written any media
queries. We're handed the original And the winner isn't... homepage composite PSD
and told to get the basic layout structure up and running in HTML and CSS as
quickly as possible. Let's see if the Columnal grid system will help us achieve
that goal.

In our original PSD, it was easy to see the layout was based on 16 columns. The
Columnal grid system however only supports up to 12 columns so let's overlay 12
columns over the PSD instead of the original 16:

Chapter 3

[63]

Having downloaded Columnal and extracted the contents of the ZIP file, we'll
duplicate the existing page and then link to columnal.css rather than main.css
in the <head>. To create visual structure using Columnal, the key is in adding the
correct div classes in the markup. Here is the full markup of the page up to
this point:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>
<title>And the winner isn't…</title>
<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>
<link href="css/columnal.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper">
 <!-- the header and navigation -->
 <div id="header">
 <div id="logo">And the winner isn't...</div>
 <div id="navigation">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

 </div>
 </div>
 <!-- the content -->
 <div id="content">

 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>
 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>

Embracing Fluid Layouts

[92]

<p>We're here to put things right. </p>
 these should have won »
 </div>
 <!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>
 <!-- the footer -->
 <div id="footer">
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </div>

</div>
</body>
</html>

First of all, we need to specify that our #wrapper div is the container for all elements
so we'll add the .container class to it:

<div id="wrapper" class="container">

Working down the page we can see that our AND THE WINNER ISN'T text is the
first row. Therefore, we'll add the.row class to that element:

<div id="header" class="row">

Our logo, although just text, sits within this row and spans the entire 12 columns.
Therefore we'll add .col_12 to it:

<div id="logo" class="col_12">And the winner isn't...</
div>

Then the navigation is the next row so we'll add a .row class to that:

<div id="navigation" class="row">

Chapter 3

[63]

And on the process goes, adding .row and .col_x classes as necessary. We'll jump
ahead at this point, as I'm concerned the repetition of this process may have you
nodding off. Instead, here is the entire amended markup. Note, it was also necessary
to move the Oscar image and set it in its own column. Plus add a wrapping .row div
around our #content and #sidebar.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>
<title>And the winner isn't…</title>
<script type="text/javascript">document.cookie='resolution='+Math.
max(screen.width,screen.height)+'; path=/';</script>
<link href="css/columnal.css" rel="stylesheet" type="text/css" />
<link href="css/custom.css" rel="stylesheet" type="text/css" />

</head>

<body>

<div id="wrapper" class="container">
 <!-- the header and navigation -->
 <div id="header" class="row">
 <div id="logo" class="col_12">And the winner isn't...</
span></div>
 <div id="navigation" class="row">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

 </div>
 </div>
 <div class="row">
 <!-- the content -->
 <div id="content" class="col_9 alpha omega">
 <img class="oscarMain col_3" src="img/oscar.png" alt="atwi_
oscar" />
 <div class="col_6 omega">
 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>

Embracing Fluid Layouts

[94]

 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>
 <p>We're here to put things right. </p>
 these should have won »
 </div>
 </div>
 <!-- the sidebar -->
 <div id="sidebar" class="col_3">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>
 </div>
 <!-- the footer -->
 <div id="footer" class="row">
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </div>

</div>
</body>
</html>

It was also necessary to add some extra CSS styles into a custom.css file. The
content of this file is as follows:

#navigation ul li {
 display: inline-block;
}

#content {
 float: right;
}

#sidebar {
 float: left;
}

.sideBlock {

Chapter 3

[63]

 width: 100%;
}

.sideBlock img {
 max-width: 45%;
 float:left;
}

.footer {
 float: left;
}

With these basic changes done, a quick look in the browser window shows that our
basic structure is in place and scales with the browser viewport:

There's obviously a lot of detail work to still be done (I know, that's more than a
slight understatement) but if you need a fast way of creating a basic responsive
structure, CSS Grid systems such as Columnal are worthy of consideration.

Embracing Fluid Layouts

[96]

Summary
In this chapter, we've learned how to change a rigid pixel-based structure to a
flexible percentage-based one. We've also learned how to use ems, rather than
pixels for more flexible typesetting. We now also understand how we can make
images respond and resize fluidly as well as implementing a server-based solution
for serving entirely different images based upon device screen size. Finally, we've
experimented with a responsive CSS Grid system that allows us to rapidly prototype
responsive structures with very minimal effort.

However, until this point we've been pursuing our responsive quest using HTML
4.01 for our markup. In Chapter 1, Getting Started with HTML5, CSS3, and Responsive
Web Design, we touched upon some of the economies that HTML5 offers us. These
economies are particularly important and relevant for responsive designs where
a "mobile first" mindset lends itself to the leanest, fastest, and most semantic
code possible. In the next chapter, we're going to get to grips with HTML5 and
modify our markup to take advantage of the latest and greatest iteration of the
HTML specification.

HTML5 for Responsive
Designs

HTML5 evolved from the Web Applications 1.0 project, started by the Web
Hypertext Application Technology Working Group (WHATWG) before being later
embraced by the W3C. Subsequently, large parts of the specification are weighted
towards dealing with web applications. If you're not building web applications, that
doesn't mean there aren't plenty of things in HTML5 you could (and indeed should)
embrace when embarking on a responsive design. So, whilst some features of
HTML5 are directly relevant to building better responsive web pages (for example,
leaner code), others are outside our responsive remit.

HTML5 also provides specific tools for handling forms and user input. This set of
features takes much of the burden away from more resource heavy technologies like
JavaScript for things like form validation. However, we're going to look at HTML5
forms separately in Chapter 8, Conquer Forms with HTML5 and CSS3.

In this chapter, we will cover the following:

•	 What parts of HTML5 can we use right now?
•	 How to write HTML5 pages
•	 The economies of using HTML5
•	 Obsolete HTML features
•	 New semantic HTML5 elements
•	 Using Web Accessibility Initiative - Accessible Rich Internet Applications

(WAI-ARIA) for increased semantics and aiding assistive technologies
•	 Embedding media
•	 Responsive HTML5 and iFrame videos
•	 Making a website available offline

HTML5 for Responsive Designs

[98]

What parts of HTML5 can we use today?
Although the full specification of HTML5 is yet to be ratified, most new features
of HTML5 are already supported, to varying degrees, by modern web browsers
including Apple's Safari, Google Chrome, Opera, and Mozilla Firefox and even
Internet Explorer 9! So, whilst it's improbable everything in the current draft of
the HTML5 specification will survive until recommendation by the W3C, there are
plenty of new features that can be implemented right now.

Most sites can be written in HTML5
Currently, if I'm tasked to build a website, my default markup would be HTML5
rather than HTML 4.01. Where the opposite was the case only a few years ago, at
present, there has to be a compelling reason not to markup a site in HTML5. All
modern browsers understand common HTML5 features with no problems (the new
structural elements, video and audio tags) and older versions of IE can be served
polyfills to address all of the shortfalls I have encountered.

What are polyfills?
The term polyfill was originated by Remy Sharp as an allusion to filling
the cracks in older browsers with Polyfilla (known as Spackling Paste in
the US). Therefore, a polyfill is a JavaScript shim that effectively replicates
newer features in older browsers. However, it's important to appreciate
that polyfills add extra flab to your code. Therefore, just because you can
add three polyfill scripts to make Internet Explorer 6 render your site the
same as every other browser doesn't mean you necessarily should!

Polyfills, shims, and Modernizr
Ordinarily, older versions of Internet Explorer (pre v9) have no understanding of any
of the new semantic elements of HTML5. However, some time ago, Sjoerd Visscher
discovered that if elements are created with JavaScript first, Internet Explorer is able
to recognize and style them accordingly. Armed with this knowledge, JavaScript
whiz Remy Sharp created a lightweight enabling script (http://remysharp.
com/2009/01/07/html5-enabling-script/) that, if included in an HTML5 page,
magically switched these elements on for older versions of Internet Explorer. For a
long time, pioneers of HTML5 would stick this script in their markup to enable users
viewing in Internet Explorer 6, 7, and 8 to enjoy a comparable experience.

http://remysharp.com/2009/01/07/html5-enabling-script/
http://remysharp.com/2009/01/07/html5-enabling-script/

Chapter 4

[99]

However, things have now progressed significantly. There's now a new kid on
the block that does all this and a whole lot more. Its name is Modernizr (http://
www.modernizr.com) and if you're writing pages in HTML5, it's well worth your
attention. Besides enabling HTML5 structural elements for IE, it also provides the
ability to conditionally load further polyfills, CSS files, and additional JavaScript files
based on a number of feature tests.

So, as there are few good reasons for not using HTML5, let's get going and start
writing some markup, HTML5 style.

Want a shortcut to great HTML5 code? Consider the HTML5 Boilerplate
If time is short and you need a good starting point for your project,
consider using the HTML5 Boilerplate (http://html5boilerplate.
com/). It's a pre-made "best practice" HTML5 file, including essential
styles (such as the aforementioned normalize.css), polyfills, and tools such
as Modernizr. It also includes a build tool that automatically concatenates
CSS and JS files and strips comments to create production ready code.
Highly recommended!

How to write HTML5 pages
Open an existing web page. There is a chance that the first few lines will look
something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

Delete the preceding code snippet and replace it with the following code snippet:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset=utf-8>

Save the document and you should now have your first HTML5 page as far as the
W3C validator is concerned (http://validator.w3.org/).

Don't worry, that's not the end of the chapter! That crude exercise is merely meant to
demonstrate HTML5's flexibility. It's an evolution of the markup you already write,
not a revolution. We can use it to supercharge the markup that we already know
how to write.

http://www.modernizr.com
http://www.modernizr.com
http://validator.w3.org/

HTML5 for Responsive Designs

[100]

So, what did we actually do there? First of all, we stated the new HTML5
Doctype declaration:

<!DOCTYPE html>

If you're a fan of lowercase, then <!doctype html> is just as good. It makes
no difference.

HTML5 Doctype—why so short?
The HTML5 <!DOCTYPE html> Doctype is so short that this was
determined to be the shortest method of telling a browser to render the
page in "standard mode". This most efficient syntax mindset is prevalent
throughout much of HTML5.

After the Doctype declaration, we opened the HTML tag, specified the language, and
then opened the <head> section:

<html lang="en">
<head>

Sprechen sie Deutsche?
According to the W3C specifications (http://dev.w3.org/html5/
spec/Overview.html#attr-lang), the lang attribute specifies the
primary language for the element's contents and for any of the element's
attributes that contain text. If you're not writing pages in English, you'd
best specify the correct language code. For example, for Japanese the
HTML tag would be <html lang="ja">. For a full list of languages
take a look at http://www.iana.org/assignments/language-
subtag-registry.

Finally, we specified the character encoding. As it's a void element it doesn't require
a closing tag:

<meta charset=utf-8>

Unless you have a good reason to specify otherwise, it's almost always UTF-8.

Chapter 4

[101]

Economies of using HTML5
I remember, in school, every so often our super-mean (but actually very good) math
teacher would be away. The class would breathe a collective sigh of relieve as, rather
than "Mr Mean" (names have been changed to protect the innocent), the replacement
was usually an easy-going and amiable man who sat quietly, leaving us to get on
without shouting or constant needling. He didn't insist on silence whilst we worked,
he didn't much care how elegant our workings were on the page – all that mattered
was the answers. If HTML5 were a math teacher, it would be that easy-going supply
teacher. I'll qualify this bizarre analogy…

If you pay attention to how you write code, you'll typically use lowercase for the
most part, wrap attribute values in quotation marks, and declare a "type" for scripts
and stylesheets. For example, you might link to a stylesheet like this:

<link href="CSS/main.css" rel="stylesheet" type="text/css" />

HTML5 doesn't require such detail, it's just as happy to see this:

<link href=CSS/main.css rel=stylesheet >

I know, I know. It makes me feel weird, too. There's no end tag/slash, there are
no quotation marks around the attribute values, and there is no type declaration.
However, easy going HTML5 doesn't care. The second example is just as valid as
the first.

This more lax syntax applies across the whole document, not just linked CSS and
JavaScript elements. For example, specify a div like this if you like:

<div id=wrapper>

That's perfectly valid HTML5. The same goes for inserting an image:

That's also valid HTML5. No end tag/slash, no quotes, and a mix of capitalization
and lower case characters. You can even omit things such as the opening <head> tag
and the page still validates. What would XHTML 1.0 say about this!

HTML5 for Responsive Designs

[102]

A sensible approach to HTML5 markup
Although we are aiming to embrace a mobile first mindset for our responsive web
pages and designs, I'll admit I can't fully let go of writing what I consider the best
practice markup (note, in my case that was adhering to the XHTML 1.0 markup
standards which required XML syntax). It's true that we can lose some minute
amounts of data from our pages by embracing these coding economies but in all
honesty, if necessary, I'll make up the shortfall by leaving an image out of my
design instead!

For me, the extra characters (end slashes and quotes around attribute values) are
worth it for increased code legibility. When writing HTML5 documents therefore
I tend to fall somewhere between the old style of writing markup (which is still
valid code as far as HTML5 is concerned, although it may generate warnings in
validators/conformance checkers) and the economies afforded by HTML5. To
exemplify, for the CSS link above, I'd go with the following:

<link href="CSS/main.css" rel="stylesheet"/>

I've kept the closing tag and the quotation marks but omitted the type attribute. The
point to make here is that you can find a level you're happy with yourself. HTML5
won't be shouting at you, flagging up your markup in front of the class and standing
you in a corner for not validating.

All hail the mighty <a> tag
One more really handy economy in HTML5 is that we can now wrap multiple
elements in an <a> tag. (Woohoo! About time, right?) Previously, if you wanted your
markup to validate, it was necessary to wrap each element in its own <a> tag. For
example, see the following code snippet:

<h2>The home page</h2>
<p>This paragraph also links to the home page</
a></p>

However, we can ditch all the individual <a> tags and instead wrap the group as
demonstrated in the following code snippet:

<h2>The home page</h2>
<p>This paragraph also links to the home page</p>

Chapter 4

[103]

The only limitations to keep in mind are that, understandably, you can't wrap one
<a> tag within another <a> tag and you can't wrap a form in an <a> tag either.

Obsolete HTML features
Besides things such as the language attributes in script links, there are some further
parts of HTML you may be used to using that are now considered "obsolete" in
HTML5. It's important to be aware that there are two camps of obsolete features in
HTML5—conforming and non-conforming. Conforming features will still work but
will generate warnings in validators. Realistically, avoid them if you can but they
aren't going to make the sky fall down if you do use them. Non-conforming features
may still render in certain browsers but if you use them, you are considered very,
very naughty and you might not get a treat at the weekend!

An example of an obsolete but conforming feature would be using a border attribute
on an image. This was historically used to stop images showing a blue border about
them if they were nested inside a link. For example, see the following:

Instead, you are advised to use CSS instead for the same effect.

In terms of obsolete and non-conforming features, there is quite a raft. I'll confess
that many I have never used (some I've never even seen!). It's possible you may
experience a similar reaction. However, if you're curious, you can find the full list
of obsolete and non-conforming features at http://dev.w3.org/html5/spec/
Overview.html#non-conforming-features. Notable obsolete and non-conforming
features are strike, center, font, acronym, frame, and frameset.

New semantic elements in HTML5
My dictionary defines semantics as "the branch of linguistics and logic concerned
with meaning". For our purposes, semantics is the process of giving our markup
meaning. Why is this important? Glad you asked. Consider the structure of our
current markup for the And the winner isn't... site:

<body>
<div id="wrapper">
 <div id="header">
 <div id="logo"></div>
 <div id="navigation">

 Why?

HTML5 for Responsive Designs

[104]

 </div>
 </div>
 <!-- the content -->
 <div id="content">

 </div>
 <!-- the sidebar -->
 <div id="sidebar">

 </div>
 <!-- the footer -->
 <div id="footer">

 </div>
</div>
</body>

Most writers of markup will see common conventions for the ID names of the
div's used—header, content, sidebar, and so on. However, as far as the code itself
goes, any user agent (web browser, screen reader, search engine crawler, and
so on) looking at it couldn't say for sure what the purpose of each div section is.
HTML5 aims to solve that problem with new semantic elements. From a structure
perspective these are explained in the sections that follow.

The <section> element
The <section> element is used to define a generic section of a document or
application. For example, you may choose to create sections round your content;
one section for contact information, another section for news feeds, and so on. It's
important to understand that it isn't intended for styling purposes. If you need to
wrap an element merely to style it, you should continue to use a <div> as you would
have before.

To find out what the W3C HTML5 specification says about <section>,
go to the following URL:
http://dev.w3.org/html5/spec/Overview.html#the-
section-element

Chapter 4

[105]

The <nav> element
The <nav> element is used to define major navigational blocks—links to other pages
or to parts within the page. As it is for use in major navigational blocks it isn't strictly
intended for use in footers (although it can be) and the like, where groups of links to
other pages are common.

To find out what the W3C HTML5 specification says about <nav>, go to
the following URL:
http://dev.w3.org/html5/spec/Overview.html#the-nav-
element

The <article> element
The <article> element, alongside <section> can easily lead to confusion. I
certainly had to read and re-read the specifications of each before it sank in.
The <article> element is used to wrap a self-contained piece of content. When
structuring a page, ask whether the content you're intending to use within a
<article> tag could be taken as a whole lump and pasted onto a different site and
still make complete sense? Another way to think about it is would the content being
wrapped in <article> actually constitute a separate article in a RSS feed? The
obvious example of content that should be wrapped with an <article> element
would be a blog post. Be aware that if nesting <article> elements, it is presumed
that the nested <article> elements are principally related to the outer article.

What the W3C HTML5 specification says about <article>:
http://dev.w3.org/html5/spec/Overview.html#the-
article-element

The <aside> element
The <aside> element is used for content that is tangentially related to the content
around it. In practical terms, I often use it for sidebars (when it contains suitable
content). It's also considered suitable for pull quotes, advertising, and groups of
navigation elements (such as Blog rolls, and so on).

HTML5 for Responsive Designs

[106]

For more on what the W3C HTML5 specification says about
<aside>, visit:
http://dev.w3.org/html5/spec/Overview.html#the-
aside-element

The <hgroup> element
If you have a number of headings, taglines and subheadings in <h1>,<h2>,<h3>,
and the subsequent tags then consider wrapping them in the <hgroup> tag. Doing so
will hide the secondary elements from the HTML5 outline algorithm as only the first
heading element within an <hgroup> contributes to the documents outline.

The HTML5 outline algorithm
HTML5 allows each sectioning container to have its own self-contained outline.
This means it's no longer necessary to think constantly about which level of header
tag you're at. For example, within a blog, I can set my post titles to use the <h1> tag,
whilst my blog title itself also has a <h1> tag. For example, consider the following
structure:

 <hgroup>
 <h1>Ben's blog</h1>
 <h2>All about what I do</h2>
 </hgroup>
 <article>
 <header>
 <hgroup>
 <h1>A post about something</h1>
 <h2>Trust me this is a great read</h2>
 <h3>No, not really</h3>
 <p>See. Told you.</p>
 </hgroup>
 </header>
 </article>

Despite having multiple <h1> and <h2> headings, the outline still appears as follows:

•	 Ben's blog
°° A post about something

As such, you don't need to keep track of the heading tag you need to use. You can
just use whatever level of heading tag you like within each piece of sectioned content
and the HTML5 outline algorithm will order it accordingly.

Chapter 4

[107]

You can test the outline of your documents using HTML5 outliners at one the
following URLs:

•	 http://gsnedders.html5.org/outliner/

•	 http://hoyois.github.com/html5outliner/

The following screenshot shows the HTML 5 Outliner page:

http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/

HTML5 for Responsive Designs

[108]

For more on what the W3C HTML5 specification says about
<hgroup>, visit:
http://dev.w3.org/html5/spec/Overview.html#the-
hgroup-element

The <header> element
The <header> element doesn't take part in the outline algorithm so can't be used to
section content. Instead it should be used as an introduction to content. Practically,
the <header> can be used for the "masthead" area of a site's header but also as an
introduction to other content such as an introduction to a <article> element.

What the W3C HTML5 specification says about <header>:
http://dev.w3.org/html5/spec/Overview.html#the-
header-element

The <footer> element
Like the <header>, the <footer> element doesn't take part in the outline algorithm
so doesn't section content. Instead it should be used to contain information about
the section it sits within. It might contain links to other documents or copyright
information for example. Like the <header> it can be used multiple times within
a page if needed. For example, it could be used for the footer of a blog but also
a footer within a blog post <article>. However, the specification notes that
contact information for the author of a blog post should instead be wrapped by
an<address> element.

What the W3C HTML5 specification says about <footer>:
http://dev.w3.org/html5/spec/Overview.html#the-
footer-element

Chapter 4

[109]

The <address> element
The <address> element is to be used explicitly for marking up contact information
for its nearest <article> or <body> ancestor. To confuse matters, keep in mind that
it isn't to be used for postal addresses and the like unless they are indeed the contact
addresses for the content in question. Instead postal addresses and other arbitrary
contact information should be wrapped in good ol' <p> tags.

For more on what the W3C HTML5 specification says about
<address>:
http://dev.w3.org/html5/spec/Overview.html#the-
address-element

Practical usage of HTML5's structural
elements
Let's look at some practical examples of these new elements. I think the <header>,
<nav>, and <footer> elements are pretty self explanatory so for starters, let's
take the current And the winner isn't... home page markup and amend the header,
navigation, and footer areas (see highlighted areas in the following code snippet):

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset=utf-8>
<meta name="viewport" content="width=device-width,initial-scale=1.0"
/>
<title>And the winner isn't…</title>
<script>document.cookie='resolution='+Math.max(screen.width,screen.
height)+'; path=/';</script>
<link href="css/main.css" rel="stylesheet" />

</head>

<body>

<div id="wrapper">
 <!-- the header and navigation -->
 <header>
 <div id="logo">And the winner isn't...</div>
 <nav>

 Why?
 Synopsis

HTML5 for Responsive Designs

[110]

 Stills/Photos
 Videos/clips
 Quotes
 Quiz

 </nav>
 </header>
 <!-- the content -->
 <div id="content">

 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>
 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>
<p>We're here to put things right. </p>
 these should have won »
 </div>
 <!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>
 <!-- the footer -->
 <footer>
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </footer>

</div>
</body>
</html>

As we've seen however, where articles and sections exist within a page, these
elements aren't restricted to one use per page. Each article or section can have its
own header, footer, and navigation. For example, if we add a <article> element
into our markup, it might look as follows:

Chapter 4

[111]

<body>

<div id="wrapper">
 <!-- the header and navigation -->
 <header>
 <div id="logo">And the winner isn't...</div>
 <nav>

 Why?

 </nav>
 </header>
 <!-- the content -->
 <div id="content">
 <article>
 <header>An article about HTML5</header>
 <nav>
 related link 1
 related link 2
 </nav>
 <p>here is the content of the article</p>
 <footer>This was an article by Ben Frain</footer>
 </article>

As you can see in the preceding code, we are using a <header>, <nav>, and
<footer> for both the page and also the article contained within it.

Let's amend our sidebar area. This is what we have at the moment in
HTML 4.01 markup:

<!-- the sidebar -->
 <div id="sidebar">
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </div>

HTML5 for Responsive Designs

[112]

Our sidebar content is certainly "tangentially" related to the main content, so first of
all, let's remove <div id="sidebar"> and replace it with <aside>:

<!-- the sidebar -->
 <aside>
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </aside>

Excellent! However, if we take a look in the browser you'd be forgiven for letting a
minor expletive slip out…

Chapter 4

[113]

Talk about one step forward and two steps back! The reason is we haven't been and
amended the CSS to match the new elements. Let's do that now before we proceed.
We need to amend all references to #header to be simply header, all references to
#navigation to be nav, and all references to #footer to be footer. For example, the
first CSS rule relating to the header will change from:

#header {
 background-position: 0 top;
 background-repeat: repeat-x;
 background-image: url(../img/buntingSlice3Invert.png);
 margin-right: 1.0416667%; /* 10 ÷ 960 */
 margin-left: 1.0416667%; /* 10 ÷ 960 */
 width: 97.9166667%; /* 940 ÷ 960 */
}

To become:

header {
 background-position: 0 top;
 background-repeat: repeat-x;
 background-image: url(../img/buntingSlice3Invert.png);
 margin-right: 1.0416667%; /* 10 ÷ 960 */
 margin-left: 1.0416667%; /* 10 ÷ 960 */
 width: 97.9166667%; /* 940 ÷ 960 */
}

This was particularly easy for the header, navigation, and footer as the IDs were
the same as the element we were changing them for – we merely omitted the initial
'#'. The sidebar is a little different: we need to change references from #sidebar
to aside instead. However, performing a "find and replace" in the code editor of
your choice will help here. To clarify, rules like the following:

#sidebar {
}

Will become:

aside {
}

Even if you've written a huge CSS stylesheet, swapping the references from HTML
4.01 IDs to HTML5 elements is a fairly painless task.

HTML5 for Responsive Designs

[114]

Beware multiple elements in HTML5
Be aware that with HTML5 there may be multiple <header>,
<footer>, and <aside> elements within a page so you may
need to write more specific styles for individual instances.

Once the styles for the And the winner isn't... have been amended accordingly we're
back in business:

Chapter 4

[115]

Now, although we're telling user agents which section of the page is the aside,
within that we have two distinct sections, UNSUNG HEROES and OVERHYPED
NONSENSE. Therefore, in the interest of semantically defining those areas let's
amend our code further:

<!-- the sidebar -->
 <aside>
 <section>
 <div class="sideBlock unSung">
 <h4>Unsung heroes...</h4>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 </section>
 <section>
 <div class="sideBlock overHyped">
 <h4>Overhyped nonsense...</h4>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </section>
 </aside>

HTML5 for Responsive Designs

[116]

The important thing to remember is that <section> isn't intended for styling
purposes, rather to identify a distinct, separate piece of content. Sections should
normally have natural headings too, which suits our cause perfectly. Because of the
HTML5 outline algorithm, we can also amend our <h4> tags to <h1> tags and it will
still produce an accurate outline of our document:

What about the main content of the site?
It may surprise you that there isn't a distinct element to markup the main content of
a page. However, the logic follows that as it's possible to demarcate everything else,
what remains should be the main content of the page.

Chapter 4

[117]

HTML5 text-level semantics
Besides the structural elements we've looked at, HTML5 also revises a few tags that
used to be referred to as inline elements. The HTML5 specification now refers to
these tags as text-level semantics (http://dev.w3.org/html5/spec/Overview.
html#text-level-semantics). Let's take a look at a few common examples.

The element
Although we may have often used the element merely as a styling hook, it
actually meant "make this bold". However, you can now officially use it merely
as a styling hook in CSS as the HTML5 specification now declares that is:

…a span of text to which attention is being drawn for utilitarian purposes without
conveying any extra importance and with no implication of an alternate voice
or mood, such as key words in a document abstract, product names in a review,
actionable words in interactive text-driven software, or an article lede.

The element
OK, hands up, I've often used merely as a styling hook, too. I need to mend my
ways as in HTML5 it's meant to be used to:

…stress emphasis of its contents.

Therefore, unless you actually want the enclosed contents to be emphasized,
consider using a tag or, where relevant, an <i> tag instead.

The <i> element
The HTML5 specification describes the <i> as:

…a span of text in an alternate voice or mood, or otherwise offset from the normal
prose in a manner indicating a different quality of text.

Suffice it to say, it's not to be used to merely italicize something.

http://dev.w3.org/html5/spec/Overview.html#text-level-semantics
http://dev.w3.org/html5/spec/Overview.html#text-level-semantics

HTML5 for Responsive Designs

[118]

Applying text-level semantics to our markup
Let's take a look at our current markup for the main content area of our home page and
see if we can enhance the meaning to user agents. This is what we have currently:

<!-- the content -->
 <div id="content">

 <h1>Every year when I watch the Oscars I'm annoyed...</
span></h1>
 <p>that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very Hollywood
is it?</p>
<p>We're here to put things right. </p>
 these should have won »
 </div>

We can definitely improve things here. To begin with, the tag within our
headline <h1> tag is semantically meaningless in that context so as we're attempting
to add emphasis with our style, let's also do it with our code:

<h1>Every year when I watch the Oscars I'm annoyed…</h1>

Let's look at our initial composite again:

Chapter 4

[119]

We also need to style the film names differently, but they don't need to suggest a
different mood or voice. Seems like the tag is the perfect candidate here:

<p>that films like King Kong, Moulin Rouge and
Munich get the statue whilst the real cinematic heroes lose
out. Not very Hollywood is it?</p>

Default styling of text-level semantic elements
Because of the historical use of , most browsers
will still render that as bold so depending upon your
situation you may need to restyle the default style in the
associated CSS.

Finally, I mean it when I say 'we're here to put things right' – I'm not messing around
and I want user agents to know it! So, finally, let's wrap that in a <i> tag. You could
argue that I should also use the tag here instead. That would also be fine in this
case but I'm going with <i>. So there! This would look like the following:

<p><i>We're here to put things right.</i></p>

Like , browsers will default to italicize the <i> tag so where needed, restyle
as necessary.

So, we've now added some text-level semantics to our content to give greater
meaning to our markup. There are plenty of other text-level semantic tags in HTML5;
for the full run down, take a look at the relevant section of the specification at the
following URL:

http://dev.w3.org/html5/spec/Overview.html#text-level-semantics

However, with a little extra effort we can take things one step further still by
providing additional meaning for users of assistive technology.

Adding accessibility to your site with
WAI-ARIA
The aim of WAI-ARIA is principally to solve the problem of making dynamic
content on a page accessible. It provides a means of describing roles, states, and
properties for custom widgets (dynamic sections in web applications) so that they
are recognizable and usable by assistive technology users.

HTML5 for Responsive Designs

[120]

For example, if an onscreen widget displays a constantly updating stock price, how
would a blind user accessing the page know that? WAI-ARIA attempts to solve
this problem. Fully implementing ARIA is outside the scope of this book (for full
information, head over to http://www.w3.org/WAI/intro/aria). However, there
are some very easy to implement parts of ARIA that we can adopt to enhance any
site written in HTML5 for users of assistive technologies.

If you're tasked with building a website for a client, there often isn't any time/money
set aside for adding accessibility support beyond the basics (sadly, it's often given
no thought at all). However, we can use ARIA's landmark roles to fix some of the
glaring shortfalls in HTML's semantics and allow screen readers that support
WAI-ARIA to switch between different screen regions easily.

ARIA's landmark roles
Implementing ARIA's landmark roles isn't specific to a responsive web design.
However, as it's relatively simple to add partial support (that also validates as
HTML5 with no further effort), there seems little point in leaving it out of any web
page you write in HTML5 from this day onwards. Enough talk! Now let's see how
it works.

Consider our new HTML5 navigation area:

<nav>

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</nav>

We can make this area easy for a WAI-ARIA capable screen reader to jump to by
adding a landmark role attribute to it, as shown in the following code snippet:

<nav role="navigation">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</nav>

Chapter 4

[121]

How easy is that? There are landmark roles for the following parts of a
document's structure:

•	 application: This role is used to specify a region used for a web application.
•	 banner: This role is used to specify a sitewide (rather than document specific)

area. The header and logo of a site, for example.
•	 complementary: This role is used to specify an area complementary to the

main section of a page. In our And the winner isn't... site, the UNSUNG
HEROES and OVERHYPED NONSENSE areas would be considered
complementary.

•	 contentinfo: This role should be used for information about the main
content. For example, to display copyright information at the footer of a
page.

•	 form: You guessed it, a form! However, note that if the form in question is a
search form, use the search role, instead.

•	 main: This role is used to specify the main content of the page.
•	 navigation: This role is used to specify navigation links for the current

document or related documents.
•	 search: This role is used to define an area that performs a search.

Taking ARIA further
ARIA isn't limited to landmark roles only. To take things
further, a full list of the roles and a succinct description of their
usage suitability is available at http://www.w3.org/TR/
wai-aria/roles#role_definitions

Let's skip ahead and extend our current HTML5 version of the And the winner isn't...
markup with the relevant ARIA landmark roles:

<body>
<div id="wrapper">
 <!-- the header and navigation -->
 <header role="banner">
 <div id="logo">And the winner isn't...</div>
 <nav role="navigation">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes

HTML5 for Responsive Designs

[122]

 Quiz

 </nav>
 </header>
 <!-- the content -->
 <div id="content" role="main">

 <h1>Every year when I watch the Oscars I'm annoyed…</h1>
 <p>that films like King Kong, Moulin Rouge and
Munich get the statue whilst the real cinematic heroes lose
out. Not very Hollywood is it?</p>
<p><i>We're here to put things right.</i></p>
 these should have won »
 </div>
 <!-- the sidebar -->
 <aside>
 <section role="complementary">
 <div class="sideBlock unSung">
 <h1>Unsung heroes...</h1>
 <img src="img/midnightRun.jpg" alt="Midnight Run"
/>
 <img class="sideImage" src="img/wyattEarp.jpg"
alt="Wyatt Earp" />
 </div>
 </section>
 <section role="complementary">
 <div class="sideBlock overHyped">
 <h1>Overhyped nonsense...</h1>
 <img src="img/moulinRouge.jpg" alt="Moulin Rouge"
/>

 </div>
 </section>
 </aside>
 <!-- the footer -->
 <footer role="contentinfo">
 <p>Note: our opinion is absolutely correct. You are wrong, even if
you think you are right. That's a fact. Deal with it.</p>
 </footer>

</div>
</body>

Chapter 4

[123]

Test your designs for free with NonVisual Desktop Access
(NVDA)
If you develop on the Windows platform and you'd like to test your ARIA
enhanced designs on a screen reader, you can do so for free with NVDA.
You can get it at the following URL:
http://www.nvda-project.org/

Hopefully, this brief introduction to WAI-ARIA has demonstrated how easy it
is to add partial support for those using assistive technology and you'll consider
enhancing your next HTML5 project with it.

Styling ARIA roles
Like any attributes, it's possible to style them directly using the attribute
selector. For example, you can add a CSS rule to the navigation role
using nav[role="navigation"] {}.

Embedding media in HTML5
For many, HTML5 first entered their vocabulary when Apple refused to add support
for Flash in their iOS devices. Flash had gained market dominance (some would
argue market stranglehold) as the plugin of choice to serve up video through a
web browser. However, rather than using Adobe's proprietary technology, Apple
decided to rely on HTML5 instead to handle rich media rendering. Whilst HTML5
was making good headway in this area anyway, Apple's public support of HTML5
gave it a major leg up and helped its media tools gain greater traction in the
wider community.

As you might imagine, Internet Explorer 8 and lower versions don't support HTML5
video and audio. However, there are easy to implement fallback workarounds for
Microsoft's ailing browsers, which we'll discuss shortly. Most other modern browsers
(Firefox 3.5+, Chrome 4+, Safari 4, Opera 10.5+, Internet Explorer 9+, iOS 3.2+, Opera
Mobile 11+, Android 2.3+) handle it just fine.

Adding video and audio the HTML5 way
I'll be honest. I've always found adding media such as video and audio into a web
page is an utter pain in HTML 4.01. It's not difficult, just messy. HTML5 makes
things far easier. The syntax is much like adding an image:

<video src="myVideo.ogg"></video>

HTML5 for Responsive Designs

[124]

A breath of fresh air for most web designers! Rather than the abundance of code
currently needed to include video in a page, HTML5 allows a single <video></
video>tag (or <audio></audio> for audio) to do all the heavy lifting. It's also
possible to insert text between the opening and closing tag to inform users when they
aren't using an HTML5 compatible browser and there are additional attributes you'd
ordinarily want to add, such as the height and width. Let's add these in:

<video src="video/myVideo.mp4" width="640" height="480">What, do you
mean you don't understand HTML5?</video>

Now, if we add the preceding code snippet into our page and look at it in Safari, it
will appear but there will be no controls for playback. To get the default playback
controls we need to add the controls attribute. We could also add the autoplay
attribute (not recommended—it's common knowledge that everyone hates videos
that auto-play). This is demonstrated in the following code snippet:

<video src="video/myVideo.mp4" width="640" height="480" controls
autoplay>What, do you mean you don't understand HTML5?</video>

The result of the preceding code snippet is shown in the following screenshot:

Chapter 4

[125]

Further attributes include preload to control pre-loading of media (early HTML5
adopters should note that preload replaces autobuffer), loop to repeat the video,
and poster to define a poster frame of video. This is useful if there's likely to be a
delay in the video playing. To use an attribute, simply add it to the tag. Here's an
example including all these attributes:

<video src="video/myVideo.mp4" width="640" height="480" controls
autoplay preload="auto" loop poster="myVideoPoster.jpg">What, do you
mean you don't understand HTML5?</video>

Providing alternate source files
The original specification for HTML5 called for all browsers to support the direct
playback (without plugins) of video and audio inside Ogg containers. However, due
to disputes within the HTML5 working group, the insistence on support for Ogg
(including Theora video and Vorbis audio), as a baseline standard, was dropped
by more recent iterations of the HTML5 specification. Therefore at present, some
browsers support playback of one set of video and audio files whilst others support
the other set. For example, Safari only allows MP4/H.264/AAC media to be used
with the <video> and <audio> elements whilst Firefox and Opera only support Ogg
and WebM.

Why can't we all just get along! (Mars Attacks)

Thankfully, there is a way to support multiple formats within one tag. It doesn't
however preclude us from needing to create multiple versions of our media. Whilst
we all keep our fingers crossed this situation resolves itself in due course, in the
meantime, armed with multiple versions of our file, we can markup the video
as follows:

<video width="640" height="480" controls autoplay preload="auto" loop
poster="myVideoPoster.jpg">
 <source src="video/myVideo.ogv" type="video/ogg">
 <source src="video/myVideo.mp4" type="video/mp4">
 What, do you mean you don't understand HTML5?
</video>

If the browser supports playback of Ogg, it will use that file; if not, it will continue
down to the next <source> tag.

HTML5 for Responsive Designs

[126]

Fallback for older browsers
Using the <source> tag in this manner, enables us to provide a number of fallbacks,
if needed. For example, alongside providing both MP4 and Ogg versions, if we
wanted to ensure a suitable fallback for Internet Explorer 8 and lower versions, we
could add a Flash fallback. Further still, if the user didn't have any suitable playback
technology, we could provide download links to the files themselves:

<video width="640" height="480" controls autoplay preload="auto" loop
poster="myVideoPoster.jpg">
 <source src="video/myVideo.mp4" type="video/mp4">
 <source src="video/myVideo.ogv" type="video/ogg">
 <object width="640" height="480" type="application/x-shockwave-
flash" data="myFlashVideo.SWF">
 <param name="movie" value="myFlashVideo.swf" />
 <param name="flashvars" value="controlbar=over&image=myVideoPo
ster.jpg&file=video/myVideo.mp4" />
 <img src="myVideoPoster.jpg" width="640" height="480" alt="__
TITLE__"
 title="No video playback capabilities, please download the
video below" />
 </object>
 <p> Download Video:
 MP4 Format: "MP4"
 Ogg Format: "Ogg"
 </p>
</video>

Audio and video tags work almost identically
The <audio> tag works on the same principles with the same attributes excluding
width, height, and poster. Indeed, you can also use <video> and <audio> tags
almost interchangeably. The main difference between the two being the fact that
<audio> has no playback area for visible content.

Responsive video
We have seen that, as ever, supporting older browsers leads to code bloat. What
began with the <video> tag being one or two lines ended up being 10 or more lines
(and an extra Flash file) just to make older versions of Internet Explorer happy! For
my own part, I'm usually happy to forego the Flash fallback in pursuit of a smaller
code footprint but each usage case differs.

Chapter 4

[127]

Now, the only problem with our lovely HTML5 video implementation is it's not
responsive. That's right. All that hard work and our responsive web design doesn't
err… respond. Take a look at the following screenshot and do your best to fight
back the tears:

HTML5 for Responsive Designs

[128]

Thankfully, for HTML5 embedded video, the fix is easy. Simply remove any
height and width attributes in the markup (for example, remove width="640"
height="480") and add the following in the CSS:

video { max-width: 100%; height: auto; }

However, whilst that works fine for files that we might be hosting locally, it doesn't
solve the problem of videos embedded within an iFrame (take a bow YouTube,
Vimeo, et al). The following code adds a film trailer for Midnight Run from YouTube:

<iframe width="960" height="720" src="http://www.youtube.com/embed/
B1_N28DA3gY" frameborder="0" allowfullscreen></iframe>

Despite my earlier CSS rule, here's what happens:

Chapter 4

[129]

I'm sure DeNiro wouldn't be too happy about this! There are a number of ways of
solving the issue, but by far the easiest I have come across is a small jQuery plugin
called FitVids. Let's see how easy it is to use the plugin by adding it to the And the
winner isn't... site.

First of all, we'll need the jQuery JavaScript library. Load this into your <head>
element. Here, I'm using the version from Google's Content Delivery Network
(CDN).

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.4/
jquery.min.js"></script>

Download the FitVids plugin from http://fitvidsjs.com/ (more information on
the plugin is at http://daverupert.com/2011/09/responsive-video-embeds-
with-fitvids/).

Now, save the FitVids JavaScript file into a suitable folder (I've imaginatively called
mine "js") and then link to the FitVids JavaScript in the <head> element:

<script src="js/fitvids.js"></script>

Finally, we just need to use jQuery to target the particular element containing our
YouTube video. Here, I've added my Midnight Run YouTube video within the
#content div:

<script>
 $(document).ready(function(){
 // Target your .container, .wrapper, .post, etc.
 $("#content").fitVids();
 });
</script>

http://fitvidsjs.com/
http://daverupert.com/2011/09/responsive-video-embeds-with-fitvids/
http://daverupert.com/2011/09/responsive-video-embeds-with-fitvids/

HTML5 for Responsive Designs

[130]

That's all there is to it. Thanks to the FitVid jQuery plugin, I now have a fully
responsive YouTube video. (Note: kids, don't pay any attention to Mr. DeNiro;
smoking is bad!)

Phew, all fixed. That should keep me on Bobby's Christmas card list!

Chapter 4

[131]

Offline Web applications
Although there are plenty of exciting features within HTML5 that don't explicitly
help our responsive quest (the Geolocation API, for example), Offline Web
applications potentially could. As we're aware of the growing number of mobile
users likely to be accessing our sites, how about we provide a means for them to
view our content without even being connected to the Internet? The HTML5 Offline
Web applications feature provides this possibility.

Such functionality is of most obvious use to web applications (funnily enough;
wonder how they thought up the title). Imagine an online note-taking web
application. A user may be halfway through completing a note when their cell phone
connection drops. With HTML5 Offline Web applications, they would be able to
continue writing the note whilst offline and the data could be sent once a connection
is later available.

What's great about the HTML5 Offline Web applications tools is that they are too
easy to set up and use. Here, we are going to use them in a basic way—to create an
offline version of our site. That means that if users want to look at our site while they
don't have a network connection, they can.

Offline Web applications in a nut shell
Offline Web applications work by each page that needs to be used offline, pointing to
a text file known as a .manifest file. This file lists all the resources (HTML, images,
JavaScript, and so on) that are needed by the page should it be offline. An Offline
Web application enabled browser (Firefox 3+, Chrome 4+, Safari 4+, Opera 10.6+, iOS
3.2+, Opera Mobile 11+, Android 2.1+, Internet Explorer 10+) reads the .manifest
file, downloads the resources listed, and caches them locally should the connection
be dropped. Simple, eh? Let's do this…

Making web pages work offline
In the opening HTML tag, we point to a .manifest file:

<html lang="en" manifest="/offline.manifest">

You can call this file anything you want but it is recommended that the file extension
used is .manifest.

HTML5 for Responsive Designs

[132]

You must add the manifest="/offline.manifest" attribute
to the HTML tag of every page you want to be available offline.

If your web server runs on Apache, you'll probably need to amend the .htaccess
file with the following line:

AddType text/cache-manifest .manifest

This will allow the file to have the correct MIME type, which is text/cache-
manifest.

While we're in the .htaccess file, also add the following:

<Files offline.manifest>
 ExpiresActive On
 ExpiresDefault "access"
</Files>

Adding the preceding lines of code, stops the browser from caching the cache. Yes,
you read that right. As the offline.manifest file is a static file, by default the
browser will cache the offline.manifest file. So, this tells the server to tell the
browser not to!

Now we need to write the offline.manifest file. This will instruct the browser
about which files to make available offline. Here's the content of the offline.
manifest file for the And the winner isn't... site:

CACHE MANIFEST
#v1

CACHE:
basic_page_layout_ch4.html
css/main.css
img/atwiNavBg.png
img/kingHong.jpg
img/midnightRun.jpg
img/moulinRouge.jpg
img/oscar.png
img/wyattEarp.jpg
img/buntingSlice3Invert.png
img/buntingSlice3.png

NETWORK:
*

FALLBACK:
/ /offline.html

Chapter 4

[133]

Understanding the manifest file
The manifest file must begin with CACHE MANIFEST. The next line is merely a
comment, stating the version number of the manifest file. More on that shortly.

The CACHE: section lists the files that we need for offline use. These should
be relative to the offline.manifest file, so paths may need to be changed
depending upon the resources that need caching. It's also possible to use
absolute URLs if needed.

The NETWORK: section lists any resources that should not be cached. Think of it as an
"online whitelist". Whatever is listed here will always by-pass the cache if a network
connection is available. If you want to make your site content available where a
network is available (rather than only looking in the offline cache), the * character
allows it. It's known as the online whitelist wildcard flag.

The FALLBACK: section uses the / character to define a URL pattern. It basically asks
"is this page in the cache?" If it finds the page there, great, it displays it. If not, it
shows the user the file specified—offline.html.

Automatic loading of pages to the offline
manifest
Depending on the circumstances, there's an even easier way of setting an offline.
manifest file up. Any page that points to an offline manifest file (remember that we
do this by adding manifest="/offline.manifest" in our opening <html> tag) gets
automatically added to the cache when a user visits it. This technique will add every
page on your site that a user visits to their cache so they can view it again offline.
Here's what the manifest should look like:

CACHE MANIFEST
Cache Manifest v1
FALLBACK:
/ /offline.html
NETWORK:
*

One point of note when opting for this technique is that just the HTML of the page
that is visited will be downloaded and cached. Not the images/JavaScript and other
resources it may contain and link to. If these are essential, specify them in a CACHE:
section as already described earlier in the Understanding the manifest file section.

HTML5 for Responsive Designs

[134]

About that version comment
When you make changes to your site or any of its resources, you must change the
offline.manifest file somehow and re-upload it. This will enable the server to
provide the new file to the browser, which will then get the new versions of the files
and kick off the offline process again. I follow Nick Pilgrim's example (from the
excellent Dive into HTML5) and add a comment to the top of the offline.manifest
file that I increment with each change:

Cache Manifest v1

Viewing the site offline
Now, it's time to test our handiwork. Visit the page in an Offline Web application
capable browser. Some browsers will warn about offline mode (Firefox for
example—note the top bar) whilst Chrome makes no mention of it:

Now, pull the plug (or you know, switch off WiFi—that just didn't sound as
dramatic as "pull the plug") and refresh the browser. Hopefully, the page will
refresh as if connected – only it isn't.

Chapter 4

[135]

Troubleshooting Offline Web applications
When I have problems getting sites to work correctly in Offline mode I tend to use
Chrome to troubleshoot. The built-in Developer tools have a handy Console section
(access it by clicking the spanner logo to the right of the address bar and then go to
Tools | Developer tools and click the Console tab) that flags up success or failure
of the offline cache and often points out what you're doing wrong. In my experience,
it's usually path issues; for example, not pointing my pages to the correct location of
the manifest file.

For the full specification of the Offline Web applications, head over to the
following URL:

http://dev.w3.org/html5/spec/Overview.html#offline

HTML5 for Responsive Designs

[136]

Summary
We've covered a lot in this chapter. Everything from the basics of creating a page
that validates as HTML5, to enabling our pages to work offline when users are
lacking an Internet connection. We've also tackled embedding rich media (video)
into our markup, and ensured it behaves responsively for differing viewports.
Although not specific to responsive designs, we've also covered how we can write
semantically rich and meaningful code and also provide help to users that rely on
assistive technologies. However, our site is still facing some major shortfalls. Without
putting too fine a point on it—it looks pretty shabby. Our text is un-styled and we're
completely lacking details such as the buttons visible in the original composite.
We've avoided loading the markup with images to solve these issues thus far with
good reason. We don't need them! Instead, in the next few chapters we're going to
embrace the power and flexibility of CSS3 to create a faster and more maintainable
responsive design.

CSS3: Selectors, Typography,
and Color Modes

In Chapter 1, Getting Started with HTML5, CSS3, and Responsive Web Design, we
noted that the number of people viewing websites over mobile telecom networks
is ever increasing. As current telecom network speeds vary enormously, we need
to consider the bandwidth and therefore load time of the websites we build. Back
in the day we had to consider how long our pages and the images and media they
contained would take to load over a 56K modem. Now, we face similar loading time
challenges. Just as the percentage rules of table-based layouts are re-emerging, so
is the need to re-examine every piece of media and bandwidth sapping content we
add to our pages. Although our devices are now mobile, the speeds they download
content and the premium they face for doing so (speed and cost) is comparable to
years gone by. Everything old is new again! Thankfully, CSS3 can heavily reduce
our reliance on images for visual flair giving us the tools to create beautiful sites
that also download in record time. There's lots of CSS3 for us to cover. Chapter 6,
Stunning Aesthetics with CSS3, will deal with more specific CSS3 techniques including
text shadows, box shadows, gradients, and backgrounds whilst Chapter 7, CSS3
Transitions, Transformations, and Animations, will look at CSS3 animations,
transforms, and transitions.

In this chapter, we will learn the following CSS3 fundamental:

•	 What CSS3 offers the frontend developer
•	 Quick and handy CSS3 tricks (multiple columns and word wraps)
•	 The anatomy of a CSS rule
•	 What vendor-specific prefixes are and how to use them
•	 New CSS3 selectors and how they work
•	 Custom typography with @font-face
•	 How to use RGB and HSL color modes with Alpha tranparency

CSS3: Selectors, Typography, and Color Modes

[138]

What CSS3 offers the frontend developer
In the past, we either gambled that users would put up with long load times for
the sake of a great design (they wouldn't, by the way!) or we ditched images, often
compromising our design ideals, for the sake of usability. CSS3, in many ways
negates the need for compromise. With just a few lines of code (and no images!) CSS3
can produce onscreen elements such as rounded corners, background gradients,
text shadows, box shadows, custom typography, and multiple background images
(alright, granted, that one does require images). If that wasn't enough, much of
the basic interaction for which we have previously relied on JavaScript, such as
hover state animations, can also be handled with pure CSS3. There are heaps of
CSS3 goodies and economies that will elevate our responsive design from merely
"a normal website made responsive" to a responsive website built for the future.
By utilizing CSS3, we will enable our responsive design to load faster, require less
resource and be far easier to maintain and amend in the future. Before we get into
that, let's deal with the "Elephant in the room".

CSS3 support in Internet Explorer
versions 6 to 8
With a few exceptions (such as @font-face), few features of the new CSS3 modules
are supported by Old IE (Internet Explorer versions 6, 7, and 8). Should you use CSS3
in your design? As ever in web development, the answer is "it depends".

Personally, at present, I principally use CSS3 to enhance a site, rather than provide
essential functionality. I'm entirely comfortable with elements looking a little different
in different browsers. I believe you and your clients should be too. You might find
it helpful to refer back to the Educating our clients that websites shouldn't look the same
in all browsers section in Chapter 1, Getting Started with HTML5, CSS3, and Responsive
Web Design. Which parts of a design are critical to it "working" or "looking right" is
subjective. But it's worth knowing that there are many polyfills available for adding
CSS3 functionality to Old IE. Applying such polyfills, should you choose to follow that
path, is discussed more in Chapter 9, Solving Cross-browser Responsive Challenges.

For a full list of what CSS 2.1 and CSS3 features are supported in the
differing versions of Internet Explorer, head over to the following URL:
http://msdn.microsoft.com/en-us/library/
cc351024%28v=vs.85%29.aspx

Chapter 5

[139]

Using CSS3 to design and develop pages in
the browser
I can't speak for you but I find re-making images tiresome. You know the kind of
comment I'm talking about, "Could we make those corners a little rounder?" or "Can
the gradient be a little darker at the top?" Once we've dutifully made the amends,
we often hear the inevitable, "Oh, no, it was better the way it was. Can you swap it
back?" Now, of course, this to-and-fro process is necessary; after all, we often want
to tweak a design just to see how it looks. However, CSS3 lets you do much of this in
mere seconds, within the code, rather than minutes within the graphics editor.

Anatomy of a CSS rule
Before exploring some of what CSS3 has to offer, to prevent confusion, let's establish
the terminology we use to describe a CSS rule. Consider the following example:

.round {
 border-radius: 10px;
}

This rule is made up of the selector (.round) and then the declaration
(border-radius: 10px;). However, the declaration is further defined by
the property (border-radius:) and the value (10px;). Happy, we're on the
same page? Great, let's press on.

Vendor prefixes and how to use them
As the CSS3 Modules specifications have yet to be either ratified by the W3C or have
all their proposed features fully implemented into browsers, browser vendors use
what's known as vendor prefixes to test new "experimental" CSS features. Whilst
this helps browser makers implement the new CSS3 modules, it makes our lives, as
writers of CSS3, just a little more tedious. Consider the following code for a rounded
corner in CSS3:

.round{
 -khtml-border-radius: 10px; /* Konqueror */
 -rim-border-radius: 10px; /* RIM */
 -ms-border-radius: 10px; /* Microsoft */
 -o-border-radius: 10px; /* Opera */
 -moz-border-radius: 10px; /* Mozilla (e.g Firefox) */
 -webkit-border-radius: 10px; /* Webkit (e.g. Safari and Chrome) */
 border-radius: 10px; /* W3C */
}

CSS3: Selectors, Typography, and Color Modes

[138]

You can see a number of vendor prefixed properties (and that is by no means an
exhaustive list), each with their own unique prefix, for example, -webkit- for
Webkit based browsers, -ms- is the Microsoft prefix, so covers the Internet Explorer,
and so on. Due to the way CSS works, a browser will go line by line down the
stylesheet, applying properties that apply to it and ignoring ones that don't.

Furthermore, applicable properties later in the stylesheet take precedence over
earlier ones. Thanks to this cascade, we can list our vendor-prefixed properties first
and then the correct (but perhaps yet to be implemented) non-prefix version last, safe
in the knowledge that when the feature is fully implemented, the correct version will
be implemented by the browser, rather than the experimental, browser-specific one
listed before it.

Clippings and JavaScript for quick CSS3 prefixes
You may find it handy to keep clippings of common CSS3 rules
containing all the necessary vendor prefixed properties. That way you
can just paste them in without needing rewrite them all each time. Many
code-editing programs (or Integrated Development Environments
(IDEs) as they are often labeled) have code clip features and when using
CSS3 they can save a lot of time. There's also JavaScript solutions that
automatically add prefixes to CSS files, check out "-prefix-free", a great
solution, at http://leaverou.github.com/prefixfree/.

It's acceptable to list every vendor prefix version of a property. However, in reality,
few people do. Instead they either target the browsers they expect to see most often
or check what browsers support the feature before writing the rule. For example, you
might just opt to go with:

.round{
 -moz-border-radius: 10px; /* Mozilla (e.g Firefox) */
 -webkit-border-radius: 10px; /* Webkit (e.g. Safari and Chrome) */
 border-radius: 10px; /* W3C */
}

That would cover Firefox, Chrome, and Safari, along with any browser that has fully
implemented the rule.

I know what you're thinking, isn't listing multiple vendor prefixed versions of the
same property going to lead to code bloat? Well, a little yes. But no matter how many
prefixed properties we add, it's still a faster, more elegant and robust solution than
using images.

Chapter 5

[141]

Before working on a site, it's wise to look at the current browser usage statistics.
In doing so, you'll have a better idea of what browsers you need to build specific
support for. For example, if time and budget are tight, you might decide to omit
vendor specific prefixes for any browser with less than 3 percent usage rate for
your site. As ever, you need to make a judgment based on a number of variables.

Now, we understand what the prefixes are and how to apply them in our rules.
Let's look at some quick and useful little CSS3 tricks.

When can I use specific CSS3 and HTML5 features?

As we delve into CSS3 more and more, I can heartily recommend visiting
http://caniuse.com, if you ever want to know what the current level
of browser support is available for a particular CSS3 or HTML5 feature.
Alongside showing browser version support (searchable by feature) it
also provides the most recent set of global usage statistics from
http://gs.statcounter.com.

http://caniuse.com
http://caniuse.com
http://gs.statcounter.com
http://gs.statcounter.com

CSS3: Selectors, Typography, and Color Modes

[138]

Quick and useful CSS3 tricks
In my day-to-day work, some of the new CSS3 features I use constantly and others
I've never needed. Before getting into the heavier stuff, I thought it might be useful to
share a couple of CSS3 goodies that make life easier, especially in responsive designs,
by accomplishing simple tasks that used to be minor headaches.

CSS3 multiple columns for responsive
designs
Ever needed to make a single piece of text appear in multiple columns? Until CSS3,
you'd need to separate the content into different markup elements and then style
accordingly. Altering markup for stylistic purposes is never a good practice. CSS3
allows us to span one or more pieces of content across multiple columns. Consider
the following markup:

<div id="main" role="main">
 <p>lloremipsimLoremipsum dolor sit amet, consectetur
// LOTS MORE TEXT //
</p>
 <p>lloremipsimLoremipsum dolor sit amet, consectetur
// LOTS MORE TEXT //
</p>
</div>

You can make all that content flow across multiple columns that are either: a certain
column width (for example, 12em) or certain number of columns (for example, 3).
Here's how:

For a certain width of column, use the following syntax (note that vendor prefixes
have been omitted for brevity):

#main {
 column-width: 12em;
}

This will mean, no matter the viewport size, the content will span across columns
that are 12 em in width. Altering the viewport will adjust the number of columns
displayed dynamically.

Chapter 5

[143]

For example, here it is in Safari with a 1024 px wide viewport:

And the following screenshot shows how the same page renders on an iPad with a
768 px wide viewport:

CSS3: Selectors, Typography, and Color Modes

[138]

A beautifully responsive layout requiring the minimum of work—I like it!

If you'd rather keep a fixed number of columns and vary the width, you can write a
rule like the following:

#main {
 column-count: 4;
}

Adding a gap and column divider
We can take things even further by adding a specified gap for the columns and a
divider:

#main {
 column-gap: 2em;
 column-rule: thin dotted #999;
 column-width: 12em;
}

This gives us a result like the following:

Chapter 5

[145]

To read the specification on the CSS3 Multi-column Layout Module, visit
http://www.w3.org/TR/css3-multicol/.

For the time being, remember you'll need to use vendor prefixes on the column
declarations for maximum compatibility.

Word wrapping
How many times have you had to add a big URL into a tiny space and, well,
despaired? Take a look at the problem in the following screenshot; notice the URL at
the bottom right breaking out of its allocated space:

CSS3 fixes this problem with a simple declaration, which as chance would have it,
also works in older versions of Internet Explorer as far back as 5.5!

word-wrap: break-word;

CSS3: Selectors, Typography, and Color Modes

[138]

Adding this to the containing element gives an effect as shown in the following
screenshot. Hey presto, the long URL now wraps perfectly!

New CSS3 selectors and how to use them
CSS3 gives incredible power for selecting elements within a page. You may not think
this sounds very glitzy but trust me, it will make your life easier and you'll love CSS3
for it! I'd better qualify that bold claim…

CSS3 attribute selectors
You've perhaps used existing CSS attribute selectors to target rules. For example,
consider the following rule:

img[alt] {
 border: 3px dashed #e15f5f;
}

This would target any image tags in the markup which have an alt attribute:

Chapter 5

[147]

You can also narrow things down by specifying what the attribute value is. For
example, consider the following rule:

img[alt="atwi_oscar"] {
 border: 3px dashed #e15f5f;
}

This would only target images which have an alt attribute of atwi_oscar. So far, so
big deal we could do that in CSS2. What is CSS3 bringing to the party? Principally,
three new "substring matching" attribute selectors…

CSS3 substring matching attribute selectors
CSS3 lets us select elements based upon the substring of their attribute selector. That
sounds complicated. It isn't! We can now select an element, based on the contents of
the attribute. The three options are whether the attribute is:

•	 Beginning with the prefix
•	 Contains an instance of
•	 Ends with the suffix

Let's see what they look like.

The "beginning with" substring matching attribute selector
The "beginning with" substring matching attribute selector has the following syntax:

Element[attribute^="value"]

In practical use, if I want to select all images on the site that had an alt attribute that
began with film, I would write the following rule:

img[alt^="film"] {
	 border: 3px dashed #e15f5f;
}

The key character in all this is the ^ symbol which means "begins with".

The "contains an instance of" substring matching attribute
selector
The "contains an instance of" substring matching attribute selector has the
following syntax:

Element[attribute*="value"]

CSS3: Selectors, Typography, and Color Modes

[138]

In practical use, if I want to select all images on the site that had an alt attribute that
contained film I would write the following rule:

img[alt*="film"] {
 border: 3px dashed #e15f5f;
}

The key character in all this is the * symbol which means "contains".

The "ends with" substring matching attribute selector
The " ends with " substring matching attribute selector has the following syntax:

Element[attribute$="value"]

In practical use, if I want to select all images on the site that had an alt attribute that
ended with film I would write the following rule:

img[alt$="film"] {
 border: 3px dashed #e15f5f;
}

The key character in all this is the $ symbol which means "ends with".

A practical, real world example
How can these substring attribute selectors actually help? Let me give you an
example where I often use CSS3 attribute selectors. If I build a website with a
Content Management System (for example, Wordpress, Concrete, or Magento), it
often gives the client the ability to add new pages. For example, perhaps they are
adding a piece of news about their company or a product update. Each time they add
a page in the CMS, the generated HTML will include an ID value for the <body> or
other relevant tag, which helps distinguish the page, markup wise, from others. For
example, one client was involved in Motorsport and had a "Racing History" section
with yearly reports. Each <body> tag would have an ID for the year:

<body id="2003">

IDs can start with numbers in HTML5
If you're not used to coding in HTML5, you might assume that an ID
beginning with a number is invalid, as it was in HTML 4.01. However,
HTML5 removes that restriction, the only things to remember with ID
names in HTML5 is that there should be no spaces in the ID name and it
must be unique on the page. For more information visit http://dev.
w3.org/html5/spec/Overview.html#the-id-attribute.

Chapter 5

[149]

I needed the navigation bar link for "Racing History" to be highlighted when any
of these yearly pages were viewed, as they related to the "Racing History" section.
However, rather than write a style rule covering every future year, I was able to
write a defensive (they are sometimes referred to as "defensive" rules as they try
and safeguard against future events) CSS3 rule:

body[id^="2"] .navHistory { color: #00b4ff; }

This means that any element with a class of .navHistory, that is a descendant of
a body with an ID beginning with 2 (for example, 2002, 2003, 2004, and on) will be
colored with the hex value of #00b4ff. One simple rule covers all eventualities.
Unless of course the website is still in its current form by the year 3000—in which case,
chances are, even if I eat and exercise well, I won't be able to continue its upkeep…

CSS3 structural pseudo-classes
The more often you code websites, the more often it's likely you'll need to solve
the same problem again and again. Let's consider a typical example. Horizontal
navigation bars are often made up of a number of equally spaced links.
Suppose we need margin to the left and right side of each list item, except for the first
and last list item. Historically, we have been able to solve this problem by adding a
semantically superfluous classname to the first and last elements in the list, as
shown in the highlighted lines in the following code snippet:

 <li class="first">Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 <li class="last">Quiz

And then by adding a couple of rules in the CSS, we can amend the margin for those
two list items:

li {
 margin-left: 5%;
 margin-right: 5%;
}
.first {
 margin-left: 0px;
}
.last {
 margin-right: 0px;
}

CSS3: Selectors, Typography, and Color Modes

[138]

This works but isn't flexible. For example, when building a website built on a CMS
system, list items for linking new content might be added automatically, so it might
not be a simple task to add or remove the last or first class to the correct list item
in the markup.

The :last-child selector
CSS2.1 already had a selector applicable for the first item in a list:

li:first-child

However, CSS3 adds a selector that can also match the last:
li:last-child

Using these selectors together, we don't need any additional classes in our markup.

We'll fix up our And the winner isn't... site navigation using this and a combination
of the display: table property. The following screenshot shows how things
look currently:

Chapter 5

[151]

Now, let's take a look at the graphic mockup:

The navigation bar links span the full width of the design, which we need to
replicate. Our markup for the navigation looks like this:

<nav role="navigation">

 Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 Quiz

</nav>

CSS3: Selectors, Typography, and Color Modes

[138]

First, we'll set the nav element to be a table:

nav {
 display: table;
 /* more code... */
}

Then the to be displayed as a table-row:

nav ul {
 display: table-row;
 /* more code... */
}

And finally the list-items to display as table-cells:

nav ul li {
 display: table-cell;
 /* more code... */
}

This means that if extra list items are added, they will automatically space
themselves accordingly. Finally, we'll use our CSS selectors to align the text to the
right and left of the first and last list items:

nav ul li:last-child {
 text-align: right;
}

nav ul li:first-child {
 text-align: left;
}

Chapter 5

[153]

Then in the browser, our navigation is approaching our original composite:

Don't worry; these tables are only for display!
You may be wondering what on earth I'm thinking of, to suggest that
we use a table for the navigational layout. However, don't forget, these
tables are only presentational. That means they exist only in the CSS and
are nothing to do with the markup. We are merely telling the browser
we want those elements to appear and behave as if they were a table, not
actually be a table. Displaying the markup in this manner also doesn't
preclude us from using a different layout type for a different viewport, for
example, display: inline-block for viewports below 768 px.

CSS3: Selectors, Typography, and Color Modes

[138]

The nth-child selectors
But what about those alternate colors shown in the navigation bar links of the
original composite? Again, CSS3 has a selector that can solve this problem for us
without the need for additional markup:

:nth-child(even)

Let's use this selector to fix the problem and then we can look at some of the many
ways that nth-child can solve problems that previously required extra markup. I'll
add alternate red links in the navigation bar by adding the following style rule:

nav ul li:nth-child(even) a {
 color: #fe0208;
}

And now we have alternate colors in the navigation links:

How about that? Not a line of jQuery in site and no extra markup! What did I tell
you? CSS3 selectors are great!

Chapter 5

[155]

Understanding what nth rules do
Amongst frontend web developers and designers, nothing makes mathematics
weaklings tremble quite like the nth-based rules (well, you know, except maybe
someone asking you to code a little PHP or give them a hand with some REGEX
expressions). Let's see if we can make sense of the beast and gain a little respect from
those backend wizards.

When it comes to selecting elements in the tree structure of the DOM (Document
Object Model or more simplistically, the elements in a page's markup) CSS3 gives
us incredible flexibility with a few nth-based rules—:nth-child(n), :nth-last-
child(n), :nth-of-type(n), and :nth-last-of-type(n). We've seen that we can
use (odd) or (even) values (as we have to fix our navigation above) but the (n)
parameter can be used in another couple of ways:

•	 Used as an integer; for example, :nth-child(2)—would select the
second item

•	 Used as a numeric expression; for example, :nth-child(3n+1)—would start
at 1 and then select every third element

The integer based property is easy enough to understand, just enter the element
number you want to select. The numeric expression version of the selector is the part
that can be a little baffling for mere mortals. Let's break it down. For practicality,
within the brackets, I start from the right. So, for example, if I want to figure out
what (2n+3) will select, I start at the right (from the third item) and know it will
select every second element from that point on. I've amended our navigation rule to
illustrate this:

nav ul li:nth-child(2n+3) a {
 color: #fe0208;
}

As you can see, the third list item is colored and then every subsequent second one
after that (if there were 100 list items, it would continue selecting every second
list item):

CSS3: Selectors, Typography, and Color Modes

[138]

How about selecting everything from the second item onwards? Well, although you
could write :nth-child(1n+2), you don't actually need the first number 1 as unless
otherwise stated, n is equal to 1. We can therefore just write :nth-child(n+2).
Likewise, if we wanted to select every third element, rather than write :nth-
child(3n+3), we can just write :nth-child(3n) as every third item would
begin at the third item anyway, without needing to explicitly state it.

The expression can also use negative numbers for example, :nth-child(3n-2)
starts at minus 2 and then selects every third item. Here's our navigation amended
with the following rule:

nav ul li:nth-child(3n-2) a {
 color: #fe0208;
}

And here's what it gives us in the browser:

Hopefully, that's making perfect sense now?

The child and last-child differ in that the last-child variant works from the
opposite end of the document tree. For example, :nth-last-child(-n+3) starts at
3 from the end and then selects all the items after it. Here's what that rule gives us in
the browser:

Chapter 5

[157]

Finally, let's consider :nth-last-of-type. Whilst the previous examples count any
children regardless of type, :nth-last-of-type let's you be specific about the type
of item you want to select. Consider the following markup:

 <li class="internal">Why?
 Synopsis
 <li class="internal">Stills/Photos
 <li class="internal">Videos/clips
 <li class="internal">Quotes
 <li class="internal">Quiz

Note that the second list item doesn't have the internal class added to it.

Consider the following rule:

nav ul li.internal:nth-of-type(n+2) a {
 color: #fe0208;
}

CSS3: Selectors, Typography, and Color Modes

[138]

You can see that we are telling the CSS, "From the second matching item, target
every item with a class called internal. And here's what we see in
the browser:

CSS3 doesn't count like jQuery!
If you're used to using jQuery you'll know that it counts from 0 upwards.
For example, if selecting an element in jQuery, an integer value of 1
would actually be the second element. CSS3 however, starts at 1 so that a
value of 1 is the first item it matches.

The negation (:not) selector
Another handy selector is the negation pseudo-class selector. This is used to select
everything that isn't something else. For example, keeping the same markup as the
previous example, if we change our rule as follows:

nav ul li:not(.internal) a {
 color: #fe0208;
}

You can see that we are opting to select every list item that doesn't have the
internal class . So in the browser, we see this:

Chapter 5

[159]

So far we have looked primarily at what's known as structural pseudo-
classes (full information on this is available at http://www.w3.org/TR/
selectors/#structural-pseudos). However, CSS3 has many more selectors. If
you're working on a web application, it's worth looking at the full list of UI element
states pseudo-classes (http://www.w3.org/TR/selectors/#UIstates), as they can;
for example, help you target rules based on whether something is selected or not.

Amendments to pseudo-elements
Pseudo-elements have been around since CSS2 but the CSS3 specification revises
the syntax of their use very slightly. To refresh your memory, until now, p:first-
line would target the first line in a <p> tag. Or p:first-letter would target the
first letter. Well, CSS3 asks us to separate these pseudo-elements with a double colon
to differentiate them from pseudo-classes. Therefore, we should write p::first-
letter instead. Note that however Internet Explorer 8 and lower versions don't
understand the double colon syntax; they understand only the single colon syntax.

Is :first-line handy for responsive designs?
One thing that you may find particularly handy about the :first-line
pseudo-element is that it is specific to the viewport. For example, if we write
the following rule:

p::first-line {
 color: #ff0cff;
}

http://www.w3.org/TR/selectors/#UIstates

CSS3: Selectors, Typography, and Color Modes

[138]

As you might expect, the first line is rendered in an awful shade of pink (I was
thinking of Moulin Rouge at the time):

However, on a different viewport, it renders a different selection of text:

>

Chapter 5

[161]

So, without needing to alter the markup, with a responsive design, there's a handy
way of having the first visual (as the browser renders it, not as it appears in the
markup) line of text appear differently than the others.

Hopefully this brief foray into CSS3 selectors illustrates how they help keep a
responsive design and code base free of additional markup. It the past, I've needed
to use a JavaScript library such as jQuery to make complicated selections but CSS3
often negates that need. It's also comforting to know that the CSS3 selectors module
is already at the W3C Recommendation status; so it's a very mature module that's
unlikely to change much from here on.

Custom web typography
For years we've made do with a boring selection of web safe fonts. When some
fancy typography was essential for a design, we've typically substituted a graphical
element for it and used a text-indent rule to shift the actual text from the viewport.

There have been a few further options for adding fancy typography to a page. sIFR
(http://www.mikeindustries.com/blog/sifr/) and Cufón (http://cufon.
shoqolate.com/generate/) used Flash and JavaScript respectively to re-make text
elements appear as the fonts they were intended to be. However, with a responsive
design, we want a lean, mean, content-serving machine, and images and code flab
should be avoided where possible. Thankfully, CSS provides a means of custom web
typography that is now ready for the big time.

The @font-face CSS rule
The @font-face CSS rule has been around since CSS2 (but subsequently absent in
CSS 2.1). It was even supported partially by Internet Explorer 4 (no, really)! So what's
it doing here, when we're supposed to be talking about CSS3?

Well, as it turns out, @font-face has been re-introduced for the CSS3 Fonts module
(http://www.w3.org/TR/css3-fonts). Due to the historic legal quagmire of using
fonts on the web, it's only recently started to gain serious traction as the de facto
solution for web typography. There's also the issue of the varying font formats and
implementations from different vendors. For example, the Embedded OpenType
(EOT) font was Internet Explorer's (and not anyone else's) preferred choice of font
format. Others favor the more common place TrueType (TTF), whilst there is also
Scalable Vector Graphics (SVG) and Web Open Font Format (WOFF). When it
comes to using @font-face for your web typography, there is both good news and
bad. First the bad…

http://www.w3.org/TR/css3-fonts
http://www.w3.org/TR/css3-fonts

CSS3: Selectors, Typography, and Color Modes

[138]

Until a single universal format wins out, it's necessary to serve multiple versions
of the same font to cover the different browser implementations. Much as there are
competing video formats, we also need a single font format for the web to emerge
victorious before dropping support for the others.

However, the good news is that adding custom fonts for every browser is now easy.
Let's do it!

Implementing web fonts with @font-face
Let's get the And the winner isn't... site typography licked into shape with the @font-
face CSS rule.

First we need some fonts. There are now a number of great sources for web fonts;
both free and paid. My personal favorite is Font Squirrel (www.fontsquirrel.com)
although Google also offers free web fonts, ultimately served with the @font-face
rule (www.google.com/webfonts). There are also great, paid services from Typekit
(www.typekit.com) and Font Deck (www.fontdeck.com).

http://www.google.com/webfonts
http://www.typekit.com

Chapter 5

[163]

As chance would have it the fonts used in my composite are all available free from
Font Squirrel (I know, I'm a cheapskate!). They are Bebas Neue, Bitstream Vera Sans
and Collaborate Thin. Having downloaded the relevant @font-face kit for each font
from Font Squirrel a look inside the ZIP file of each reveals the font itself in various
formats (WOFF, TTF, EOT , and SVG) plus a stylesheet.css file containing a font
stack for the font needed. For example, the rule for Bebas Neue is as follows:

@font-face {
 font-family: 'BebasNeueRegular';
 src: url('BebasNeue-webfont.eot');
 src: url('BebasNeue-webfont.eot?#iefix') format('embedded-
opentype'),
 url('BebasNeue-webfont.woff') format('woff'),
 url('BebasNeue-webfont.ttf') format('truetype'),
 url('BebasNeue-webfont.svg#BebasNeueRegular') format('svg');
 font-weight: normal;
 font-style: normal;

}

Much like the way vendor prefixes work, the browser will apply styles from that list
of properties (with the lower properties, if applicable, taking precedence) and ignore
ones it doesn't understand. That way, no matter what the browser, there should be a
font that it can use.

Now, although this block of code is great for fans of copy and paste, it's important
to pay attention to the paths the fonts are stored in. For example, I tend to copy the
fonts from the ZIP file and store them in a folder inventively called fonts on the
same level as my css folder. Therefore, as I'm usually copying this font stack rule
into my main stylesheet, I need to amend the paths. So, my rule becomes:

@font-face {
 font-family: 'BebasNeueRegular';
 src: url('../fonts/BebasNeue-webfont.eot');
 src: url('../fonts/BebasNeue-webfont.eot?#iefix')
format('embedded-opentype'),
 url('../fonts/BebasNeue-webfont.woff') format('woff'),
 url('../fonts/BebasNeue-webfont.ttf') format('truetype'),
 url('../fonts/BebasNeue-webfont.svg#BebasNeueRegular')
format('svg');
 font-weight: normal;
 font-style: normal;

}

CSS3: Selectors, Typography, and Color Modes

[138]

It's then just a case of setting the correct font and weight (if needed) for the relevant
style rule. In this case, I want to amend the navigation links to use the new Bebas
Neue font:

nav ul li a {
 height: 42px;
 line-height: 42px;
 text-decoration: none;
 text-transform: uppercase;
 font-family: 'BebasNeueRegular';
 font-size: 1.875em; /*30 ÷ 16 */
 color: black;
}

And here is how the navigation bar now looks in the browser:

When replacing fonts you'll typically need to amend the font sizing. However,
having put the existing font size calculation in a comment to the side, it's easy to
amend accordingly. An added bonus is that, if the composite uses the same fonts
you are using in the code, you can plug the sizes in direct from the composite file.
For example, my composite shows the "EVERY YEAR…" text as 102 px, so using the
tried and trusted target ÷ context = result technique I can convert this value to ems:

#content h1 {
 font-family: Arial, Helvetica, Verdana, sans-serif;
 text-transform: uppercase;
 font-family: 'BebasNeueRegular';
 font-size: 6.375em; /* 102 ÷ 16 */
}

Once I've amended the font-family and font-size declarations for all relevant
rules, the front page now looks like the following in Google Chrome (using the
WOFF font format):

Chapter 5

[165]

The design still isn't perfect but the typography now perfectly mirrors that of our
original composite. For comparison, here's how it's looking on the iPad 2 (which
supports TTF fonts form version iOS 4.2 onwards):

CSS3: Selectors, Typography, and Color Modes

[138]

Help—my CSS3 @font-face headings
look messy
This problem drove me to distraction when I first started using @font-face fonts to
set my web typography free. It's not particular to responsive designs, it can happen
with any heading that has a @font-face font applied. Here's a portion of a design
composite I was working on:

When I had built the site, the relevant markup was as follows:

<div class="intro">
 <h1>We're Bridestone: providing beautiful quality
<i>natural</i> stone products.</h1>
 …more code…
</div> <!-- intro:END -->

And here was the relevant CSS:

.intro h1 {
 font-family: CaudexBold, "Times New Roman", Times, serif;
 font-size: 2.63636364em;
 line-height: 1em;
}
.intro h1 span {
 font-size: 0.545454545em;
 font-family: CaudexRegular, "Times New Roman", Times, serif;
 font-weight: normal;
}

Chapter 5

[167]

However, although I was using @font-face so that I could use exactly the same font
as the composite, the header still looked a little messy in the browser:

Hopefully you can make out that the We're Bridestone text doesn't match the
composite. It's thicker, which degrades the clarity!

It turns out that the problem relates to font weight. Unless explicitly stating the
font-weight property, many browsers will apply a standard font-weight
(typically, 700) to any heading elements. The solution therefore is to always define
the font-weight of any @font-face fonts used in heading elements. For example, in
this instance, I amended the CSS to:

.productIntro h1 {
 font-family: CaudexBold, "Times New Roman", Times, serif;
 font-weight: 400;
 font-size: 2.63636364em;
 line-height: 1em;
}

CSS3: Selectors, Typography, and Color Modes

[138]

This then overrides the font-weight value that the browser would ordinarily use
and as shown in the following screenshot, the design finally matches the composite
in the browser:

A note about custom @font-face typography
and responsive designs
The @font-face method of web typography is, on the whole, great. The only caveats
to be aware of when using the technique with responsive designs are in relation to
the font file size. For example, the And the winner isn't... site is using three custom
fonts—Bebas Neue, Bitstream Vera Sans, and Collaborate Thin. At worst, if the
device rendering the page required the SVG font format, it will require an extra 70
KB of data, compared with using the standard web safe fonts such as Arial. These
fonts are also fairly lightweight—others are not! Be sure to check the size of custom
fonts if you want the best site performance.

A truly responsive type unit on the way?
Amongst the current working draft of the CSS3 Fonts module is
reference to viewport relative fonts (http://www.w3.org/TR/
css3-values/#viewport-relative-lengths). The vw unit (for
viewport width), vh unit (for viewport height) and vm unit (for viewport
minimum; equal to the smaller of either vm or vh) could be crucial time
savers in the years to come. Sadly, at present there is no browser support
apart from Internet Explorer 9.

http://www.w3.org/TR/css3-values/#viewport-relative-lengths
http://www.w3.org/TR/css3-values/#viewport-relative-lengths

Chapter 5

[169]

New CSS3 color formats and alpha
transparency
So far, CSS3 has given us new powers of selection and the ability to add custom
typography to our designs. Now, we'll look at ways that CSS3 allows us to work
with color that were simply not possible before.

Firstly, CSS3 allows us to use new methods, such as RGB and HSL, for declaring
color . In addition, it enables us to use those two methods alongside an alpha channel
(RGBA and HSLA respectively).

RGB color
RGB (Red, Green, and Blue) is a coloring system that's been around for decades.
It works by defining different values for the red, green, and blue components of a
color. For example, the red color used for the odd numbered navigation links on
the And the winner isn't... site is currently defined in the CSS as a hex (hexadecimal)
value, #fe0208:

nav ul li:nth-child(odd) a {
 color: #fe0208;
}

However, with CSS3, it can equally be described as an RGB value:

nav ul li:nth-child(odd) a {
 color: rgb(254, 2, 8);
}

CSS3: Selectors, Typography, and Color Modes

[138]

Most image editing applications show colors as both hex and RGB values in their
color picker. The following screenshot shows the Photoshop color picker, with the R,
G, and B boxes showing the values for each channel:

You can see that the R value is 254, the G value is 2 and the B value is 8. Which is
easily transferable to the CSS color property value. In the CSS, after defining the
color mode (for example, rgb) the values for red, green and blue colors are comma
separated in that order within parenthesis.

HSL color
Besides RGB, CSS3 also allows us to declare color values as HSL (Hue, Saturation,
and Lightness).

HSL isn't the same as HSB!
Don't make the mistake of thinking that the HSB (Hue, Saturation, and
Brightness) value shown in the color picker of image editing applications
such as Photoshop is the same as HSL—it isn't!

Chapter 5

[171]

What makes HSL such a joy to use is that it's relatively simple to understand the
color that will be represented based on the values given. For example, unless you're
some sort of color picking Ninja, I'd wager you couldn't instantly tell me what
color rgb(255, 51, 204) is? Any takers? No, me neither. However, show me the
HSL value of hsl(315, 100%, 60%) and I could take a guess that it is somewhere
between Magenta and Red color (it's actually a festive pink color—perhaps I'm
starting to like Moulin Rouge after all). How do I know this? Simple…

HSL works on a 360° color wheel. The first figure in a HSL color, represents Hue,
and has Yellow at 60°, Green at 120°, Cyan at 180°, Blue at 240°, Magenta at 300° and
finally Red at 360°. So as the aforementioned HSL color had a hue of 315, it's easy
to know that it will be between Magenta (at 300°) and Red (at 360°). The following
two values for saturation and lightness, specified as percentages, merely alter the
base hue. For a more saturated or colorful appearance, use a higher percentage in the
second value. The final value, controlling the lightness, can vary between 0 percent
for black and 100 percent for white.

So, once you've defined a color as an HSL value, it's also easy to create variations on
it, merely by altering the saturation and lightness percentages. For example, our red
navigation links can be defined in HSL values as follows:

nav ul li:nth-child(odd) a {
 color: hsl(359, 99%, 50%);
}

If we wanted to make a slightly darker color on hover, we could use the same HSL
value and merely alter the lightness (the final value) percentage value only, as shown
in the following code snippet:

nav ul li:nth-child(odd) a:hover {
 color: hsl(359, 99%, 40%);
}

In conclusion, if you can remember the mnemonic Young Guys Can Be Messy
Rascals (or any other mnemonic you care to memorize) for the HSL color wheel,
you'll be able to approximately write HSL color values without resorting to a color
picker and also create variations upon it. Show that trick to the savant backend PHP
and .NET guys at the office party and earn some quick kudos!

CSS3: Selectors, Typography, and Color Modes

[138]

Fallback color values for IE6, IE7, and IE8
As you might have guessed, RGB and HSL are not supported in Internet Explorer
versions below IE9. Therefore, if a fallback color declaration is needed for these
browsers, specify it first before the RGB or HSL value. For example, the navigation
link rule defined above could have a hex fallback specified like this:

nav ul li:nth-child(odd) a {
 color: #fe0208;
 color: hsl(359, 99%, 50%);
}

Alpha channels
So far you'd be forgiven for wondering why on earth we'd bother using HSL or RGB
instead of our trusty hex values we've been using for years. Where HSL and RGB
differ from hex is that they allow the use of an alpha transparency channel. This
means one element with an alpha transparency will show what's beneath it.

Let's make some amendments to the And the winner isn't... home page to illustrate.
First, we'll set a grungy background image in the body element, as follows:

body {
 background: url(../img/grunge.jpg) repeat;
}

Now, we'll add a white background in the #wrapper div (which encloses all the other
elements). However, instead of setting a solid white color with a hex value, we'll set
a HSLA value as shown in the highlighted line in the following code snippet:

#wrapper {
 margin-right: auto;
 margin-left: auto;
 width: 96%; /* Holding outermost DIV */
 max-width: 1414px;
 background-color: hsla(0, 0%, 100%, 0.8);
}

An HSLA color declaration is similar in syntax to a standard HSL rule. However,
in addition, you must declare the value as hsla (rather than merely hsl) and
add an additional opacity value, given as a decimal value between 0 (completely
transparent) and 1 (completely opaque). Here, we have specified that our white
#wrapper isn't completely opaque. The following screenshot shows how it looks in
the browser:

Chapter 5

[173]

The RGBA syntax follows the same convention as the HSLA equivalent, using an
additional opacity value after the color:

background-color: rgba(255, 255, 255, 0.8);

Hopefully you can see that the addition of an alpha channel to both the RGB and
HSL color modes, allows us a great deal of flexibility when layering elements. It
means that we no longer have to rely on the transparency of images (PNG and GIF
images, for example) to achieve this type of visual effect, which is great news when
building a responsive design.

CSS3: Selectors, Typography, and Color Modes

[138]

Why not just use opacity?
CSS3 also allows elements to have opacity set with the opacity
declaration. A value is set between zero and one in decimal increments
(for example, opacity set to 0.1 is 10 percent). However, this differs from
RGBA and HSLA in that setting an opacity value on an element affects the
entire element. Whereas, setting a value with HSLA or RGBA meanwhile
allows particular parts of an element to have an alpha layer. For example,
an element could have an HSLA value for the background but a solid
color for the text within it.

The CSS3 Color module was the first of the CSS3 modules to reach the advanced
Recommendation stage. Therefore, like the CSS3 Selectors module, CSS3 Colors are
good to use right away, safe in the knowledge that the method of implementation is
unlikely to change from this point onwards.

Summary
In this chapter, we've learned how to easily select almost anything we need on the
page with CSS3's new selectors. We've also looked at how we can make responsive
columns for content in record time and solve common and annoying problems such
as long URL wrapping. We now also have an understanding of CSS3's new color
module and how we can apply colors with RGB and HSL complete with transparent
alpha layers for great aesthetic effects. In this chapter, we've also learned how to add
custom fonts to a design with the @font-face rule, finally freeing us from the shackles
of the humdrum selection of "web-safe" fonts we're used to designing with. Despite
all these great new features and techniques, we've only picked at the surface of what
we can do with CSS3. Let's move on now and look at even more ways CSS3 can
make a responsive design as fast, efficient, and maintainable as possible with CSS3
text shadows, box shadows, gradients, and multiple backgrounds.

Stunning Aesthetics
with CSS3

In the previous chapter we learned about some quick and useful CSS3 techniques
to aid in building responsive designs. We also made a big difference to the visuals
by employing the CSS3 @font-face rule to apply custom typography and learned
about CSS3's tools for selecting DOM elements. So, with some CSS3 basics covered,
let's look at some more advanced features of CSS3; how we can give a responsive
design an aesthetic lift by using some of the more exciting CSS3 techniques that,
for the vast majority, don't require a single graphics image, making our responsive
design as bandwidth friendly as possible.

In this chapter we will cover:

•	 How to create text-shadows with CSS3
•	 How to create box-shadows (drop shadows) with CSS3
•	 Making gradient backgrounds with CSS3
•	 Using multiple backgrounds with CSS3
•	 Using CSS3 background gradients to make patterns
•	 Using the CSS3 @font-face rule to make bandwidth friendly icons

At this point I'm going to reiterate why I believe CSS3 is so useful in responsive
design: using CSS3, rather than images in a bandwidth design reduces http requests
(and hence makes the pages load faster) and makes the design more flexible and
maintainable. Those benefits would be useful even on a typical fixed-width 'desktop'
design but it's even more important with a responsive design as it easily allows
different size box or text shadows at different viewports—without needing to make
and export a single image. I'm presuming you're with me on this, so let's dig in.

Stunning Aesthetics with CSS3

[176]

Vendor prefixes
When implementing CSS3, just remember to add relevant vendor prefixes
to ensure the broadest cross-browser compatibility. Alternately, if you're
happy to add some JavaScript to your code, consider the afore mentioned
-prefix-free script. It automatically adds relevant vendor prefixes to any
CSS3 rules that need them, allowing you to only write the W3C version
in your stylesheet. Get it here: http://leaverou.github.com/
prefixfree/.

Text shadows with CSS3
One of the most widely implemented CSS3 features is 'text-shadow'. Like @font-
face, it had a previous life but was dropped in CSS 2.1. Thankfully it's back and
widely supported (all modern browsers and Internet Explorer 9 onwards).

Let's look at the basic syntax:

.element {
 text-shadow: 1px 1px 1px #cccccc;
}

Remember, the values in shorthand rules always go right and then down. Therefore,
the first value is the amount of shadow to the right, the second is the amount down,
the third value is the amount of blur (the distance the shadow travels before fading
to nothing), and the final value is the color.

HEX, HSL, or RGB color allowed
The color value doesn't need to be defined as a HEX value. It can just as easily be
HSL(A) or RGB(A) :

text-shadow: 4px 4px 0px hsla(140, 3%, 26%, 0.4);

However, keep in mind that the browser must then also support HSL/RGB color
modes along with text-shadow in order to render the effect. If I'd really like to use
HSLA or RGBA (because of the opacity capability) I tend to do this:

text-shadow: 4px 4px 0px #404442;
text-shadow: 4px 4px 0px hsla(140, 3%, 26%, 0.4);

Define the shadow first with a HEX value (as a fall back for older browsers) and then
repeat the rule afterwards using the HSLA or RGBA value.

Chapter 6

[177]

Pixels, em, or rem
You can also set the shadow values in em or rem. For example, here's the AND THE
WINNER ISN'T composite:

In Photoshop, the EVERY YEAR text is 102 px with a text shadow of 4 px.
Therefore, using the trusty target ÷ context = result formula (4 ÷ 102 = .039215686).
So this becomes:

text-shadow: .039215686em .039215686em 0em #dad7d7; /* 4 ÷ 102 */

Stunning Aesthetics with CSS3

[178]

The following screenshot shows the effect in the browser:

Personally, I rarely use em or rem for text-shadow values. As the values are always
really low, using 1 or 2 px generally looks good across all viewports.

Preventing a text shadow
Depending on your eyesight, you may notice that we now also have a text shadow
on the second sentence, WHEN I WATCH THE OSCARS I'M ANNOYED….
Here's why:

<h1>Every year when I watch the Oscars I'm annoyed...</h1>

Chapter 6

[179]

The text-shadow is currently applying to the entire <h1> tag (which includes the
 tag within it) so we need to remove the text-shadow from the tag:

#content h1 em {
 font-family: 'BitstreamVeraSansRoman';
 display: block;
 line-height: 1.052631579em; /* 40 ÷ 38 */
 color: #757474;
 font-size: .352941176em; /* 36 ÷ 102 */
 text-shadow: none;
}

And now it's looking good:

Stunning Aesthetics with CSS3

[180]

Left and top shadows
Shadows to the left and above can be achieved using negative values. For example:

text-shadow: -4px -4px 0px #dad7d7;

Adds an effect like the following:

If there is no blur to be added to a text-shadow the value can be omitted from the
declaration, for example:

 text-shadow: -4px -4px #dad7d7;

The spec assumes that the first two values are for the offsets if no third value
is declared.

Creating an embossed text-shadow effect
I've always felt that text-shadow works best for creating embossed text. This
effect usually works best with a highlight color (for example, white or close to it)
applied to dark text on a non-white background. Let's add an embossed effect to
the navigation links:

nav ul li a {
 height: 42px;
 line-height: 42px;
 text-decoration: none;
 text-transform: uppercase;
 font-family: 'BebasNeueRegular';
 font-size: 1.875em; /*30 ÷ 16 */
 color: #000000;
 text-shadow: 0 1px 0 hsla(0, 0%, 100%, 0.75);
}

And here's the result. Subtle but effective—just a little depth added without shouting
LOOK AT MY TEXT-SHADOW!

Chapter 6

[181]

For the best embossed text, I tend to find that 1 or 2 px in the vertical
offset and nothing for blur and horizontal offset works best.

Multiple text-shadows
It's possible to add multiple text shadows by comma separating two values.
For example:

text-shadow: 0px 1px #ffffff,4px 4px 0px #dad7d7;

As ever, subtlety is necessary or type can become illegible. I'm going to use this
declaration to combine both the previous embossed effect and the existing text-
shadow. Here's the effect in the browser:

Read the W3C specification for the text-shadow property here:
http://www.w3.org/TR/css3-text/#text-shadow

Box shadows
Once text-shadows are understood, box-shadows will be a piece of cake. Principally,
they follow exactly the same syntax: horizontal offset, vertical offset, blur, and color:

box-shadow: 0px 3px 5px #444444;

However, they aren't as well supported across browsers so it's wise to use vendor
prefixes to maximize compatibility. For example:

-ms-box-shadow: 0px 3px 5px #444444;
-moz-box-shadow: 0px 3px 5px #444444;
-webkit-box-shadow: 0px 3px 5px #444444;
box-shadow: 0px 3px 5px #444444;

Stunning Aesthetics with CSS3

[182]

We'll use this to add a box shadow to the film posters in the sidebar of the AND THE
WINNER ISN'T site:

.sideBlock img {
 max-width: 45%;
 box-shadow: 0px 3px 5px #444444;
}

Here's the effect in the browser:

Inset shadow
The box-shadow property can also be used to create an inset shadow—this applies
within the targeted element, as opposed to the outside, as a normal box shadow
would. It's useful for creating vignette effects for example. Here is the syntax:

box-shadow:inset 0 0 40px #000000;

Chapter 6

[183]

Everything functions as before but the inset part of the declaration instructs the
browser to set the effect on the inside. I'm going to use this rule now on the <body>
tag to create a vignette effect for the entire page. The idea is make a shadow appear
from all the edges of our page.

body {
 -moz-box-shadow:inset 0 0 30px #000000;
 -webkit-box-shadow:inset 0 0 30px #000000;
 box-shadow:inset 0 0 30px #000000;
}

Here's what the effect looks like in the browser:

Stunning Aesthetics with CSS3

[184]

Multiple shadows
Like text-shadows, you can have multiple box-shadows. Again, merely separate the
values with a comma and they are applied top to bottom as they are listed. I remind
myself of the order by thinking that the declaration nearest to the top in the rule (in
the code) appears nearest to the 'top' of the order when displayed in the browser.

box-shadow: inset 0 0 30px hsl(0, 0%, 0%),
 inset 0 0 70px hsla(0, 97%, 53%, 1);

I've added this to my body rule and it produces an awful red boudoir effect. Must be
the by-product of having an image of Moulin Rouge on the page!

Chapter 6

[185]

Suffice to say, I'm taking that declaration straight out! However, this demonstrates
the power of using CSS3 to toy with design ideas. Adding visual flourishes and
removing them is a matter of seconds without having to touch a graphics editor.

You can read the W3C specification for the box-shadow property here:
http://www.w3.org/TR/css3-background/#the-box-shadow

Background gradients
When not using CSS3, if we want an element to have some sort of background
gradient, we use a thin graphical slice and then tile it horizontally/vertically. As
graphics resources go, it's quite an economical tradeoff. An image, only a pixel or
two wide, isn't going to break the bandwidth bank and on a single site it can be used
on multiple elements.

Linear background gradients
Let's start with this technique to make a linear background gradient for the sidebar
of the AND THE WINNER ISN'T site:

aside {
 border-right-color: #e8e8e8;
 border-right-style: solid;
 border-right-width: 2px;
 margin-top: 58px;
 padding-left: 1.5%;
 padding-right: 1.0416667%;
 margin-left: 1.0416667%;
 float: left;
 width: 20.7083333%;
 background: url(../img/sidebarBg2.png) 50% repeat-x;
}

Stunning Aesthetics with CSS3

[186]

Here's how it looks in a browser:

However, it still requires trips to the graphics editor when we want to amend
the effect. Plus occasionally, content can 'break out' of the gradient background,
extending beyond its fixed size limitations. This problem is compounded with a
responsive design, as we want the page structure to have the ability to change shape
(for example, getting longer or wider) significantly without breaking up the design.

For example, let's suppose I wanted to add another two films in each section. Here's
what happens:

Chapter 6

[187]

It's not terrible but the grey gradient certainly isn't spanning the whole sidebar
section, as I'd like. Ordinarily, I'd have to head back to my graphics editor and re-
make the graphic. With a CSS3 gradient however, things are far more flexible. Here's
the syntax for the same gradient in pure CSS3, instead of using an image:

background: linear-gradient(90deg, #ffffff 0%, #e4e4e4 50%,
 #ffffff 100%);

And here's how it looks in a supporting browser:

No matter how long that section gets (after all, there are plenty of films I could
enthuse and moan about in equal measure), the CSS3 gradient will always cover
the area.

Stunning Aesthetics with CSS3

[188]

The only significant fly in the ointment of background gradient nirvana is that
they aren't supported as well as some of the other CSS3 features. Internet Explorer
9 doesn't have native support for them for instance (although it is promised for
Internet Explorer 10). However, background gradients are supported in most other
browsers, albeit with vendor prefixes. It shouldn't stop you from using them to
enhance designs for browsers that support them now and others that will in the near
future. As a fallback for older browsers, it's sometimes preferable to define a solid
background color first so that older browsers at least render a solid background if
they don't understand the gradient rules.

Note: there used to be different background gradient syntaxes
Historically, there were a number of different syntaxes employed by
different browser vendors to render the same background gradient effect.
Webkit was the main offender but thankfully, since Safari 5.1 they have
adopted the same conventions as Mozilla—the conventions that the W3C
is also using.

Breakdown of linear gradient syntax
The linear background gradient syntax (refer to the following example) is potentially
confusing so let's break it down:

•	 Within the parenthesis the first (optional) value (in this case 90deg) defines
the direction the gradient starts off in. Leaving this out defaults to a vertical
top to bottom gradient. You can also use values like to top right, which
would be a diagonal gradient ending at the top right.

•	 The next value (#ffffff 0% in this example) is the 'starting point'—a color
value given as the color and then the position. You could also use something
like blue 20% which would then start fading from blue to the next color
at 20 percent along the imaginary line from beginning to end of the linear
gradient. Equally, you could set a negative value for the position so that the
gradient begins before it is actually visible. For example:
background: linear-gradient(90deg, #ffffff -50%, #e4e4e4 50%,
 #ffffff 100%);

This line means that the gradient would start 50 percent before the beginning
of the visible area the imaginary line travels along.

Chapter 6

[189]

•	 The next value is a 'color stop'. Let's recap where we're at: in our example
we are moving in an upwards direction at 90 degrees (90deg), starting with
white (#ffffff 0%), and moving towards a color value of #e4e4e4 (a light
grey color) at 50 percent along the line. This is our first 'color stop' within the
gradient. We can use multiple color stops if we like, (separated by commas)
before we define our 'ending point'.

•	 The final value in parenthesis (#ffffff 100% in our example) is always the
'ending point' of the gradient. Regardless of how many color stops are placed
after the starting point, the final value is always the ending point.

Read the W3C specification for linear background gradients at:
http://dev.w3.org/csswg/css3-images/#linear-gradients

Radial background gradients
CSS3 background gradients aren't limited to linear gradients. It's equally simple to
create a radial gradient. These begin from a central point and spread out smoothly in
an elliptical or circular shape.

Here's the syntax for a radial background gradient:

background: radial-gradient(center, ellipse cover, #ffffff 72%,
 #dddddd 100%);

Adding this declaration to our #content rule results in the following effect:

Stunning Aesthetics with CSS3

[190]

See that subtle darkening at the corners? That's our radial gradient. Let's break the
syntax down to see what's going on.

Breakdown of radial gradient syntax
After specifying the property (background:) we specify that we'd like a radial-
gradient (rather than a linear one). Then, within parenthesis we specify the starting
point. In the previous example, we used center but we could equally use something
like 25px 25px to start 25 px from the top and left of the element. For example:

background: radial-gradient(25px 25px, ellipse cover, #ffffff 72%,
 #dddddd 100%);

This line of code produces the following effect:

The center is 25 px from the top left of the element and then radiates smoothly
outwards.

The next value in our declaration is more straightforward; it's the shape and size the
radial gradient should take:

background: radial-gradient(center, ellipse cover, #ffffff 72%,
 #dddddd 100%);

For shape, the options are either circle (the gradient will radiate uniformly in all
directions) or ellipse (which will radiate different amounts in different directions).
However, there's quite a bit of flexibility in how the shape is sized. The size can be
any of the following:

•	 closest-side: the shape meets the side of the box nearest to the center (in
the case of circles), or meets both the horizontal and vertical sides that are
closest to the center (in the case of ellipses)

•	 closest-corner: the shape meets exactly the closest corner of the box from
its center

Chapter 6

[191]

•	 farthest-side: the opposite of closest-side, in that rather than the shape
meeting the nearest size, it's sized to meet the one farthest from its center (or
both the furthest vertical and horizontal side in the case of an ellipse)

•	 farthest-corner: the shape expands to the farthest corner of the box from
the center

•	 cover: identical to farthest-corner
•	 contain: identical to closest-side

It's then a matter of defining the starting point, color stops, and end point (in exactly
the same manner as linear gradients).

For example, if we changed our rule to this:

background: radial-gradient(20px 20px, circle cover,
 hsla(9,69%,85%,0.5) 0%,
 hsla(9,76%,63%,1) 50%,
 hsla(10,98%,46%,1) 51%,
 hsla(24,100%,50%,1) 75%,
 hsla(10,100%,39%,1) 100%);

You can see we are starting 20 pixels from the left and top, using a circle to cover the
area and using multiple HSL(A) color stops. Here's how it looks:

Hopefully, while this isn't the best lesson in aesthetics, it demonstrates the power of
using pure CSS3 to achieve visual effects.

Read the W3C specification for radial background gradients at: http://
dev.w3.org/csswg/css3-images/#radial-gradients

Stunning Aesthetics with CSS3

[192]

The cheat's way to perfect CSS3 linear and radial gradients
If writing out a CSS3 gradient seems like hard work there are some
great online gradient generators. My personal favorite is http://www.
colorzilla.com/gradient-editor/. It uses a graphics editor style
GUI, allowing you to pick your colors, stops, gradient style (linear and
radial gradients are supported), and even the color space (HEX, RGB(A),
HSL(A)) you'd like the final gradient in. There are also loads of preset
gradients to use as starting points. If that wasn't enough, it even gives you
optional code for fixing up Internet Explorer 9 to show the gradient and a
fallback flat color for older browsers. Still not convinced? How about the
ability to generate a gradient based on an existing image? Thought that
might swing it for you.

Repeating gradients
CSS3 also gives us the ability to create repeating background gradients. Let's take a
look at how it's done:

background: repeating-linear-gradient(90deg, #ffffff 0px,
 hsla(0, 1%, 50%,0.1) 5px);

And here's how that looks applied to the sidebar:

Chapter 6

[193]

Firstly, prefix the linear-gradient or radial-gradient with 'repeating', then it
follows the same syntax as a normal gradient. Here I've used pixel distances between
the white and grey colors (0px and 5px respectively) but you could also choose to
use percentages. For best results, it's recommended to stick to the same measurement
units (such as, pixels or percentages) within a gradient.

Let's try a repeating radial gradient:

background: repeating-radial-gradient(2px 2px, ellipse,
 hsla(0,0%,100%,1) 2px, hsla(0,0%,95%,1) 10px,
 hsla(0,0%,93%,1) 15px, hsla(0,0%,100%,1) 20px);

It's very similar to the standard radial gradient used earlier. I've merely amended
the start point, removed the 'cover' value as it's not needed and then set distances for
each color stop in pixels. My end point is 20px so the pattern repeats every 20 pixels.
Here's that rule applied to the body. I'll warn you now—it isn't pretty!

Stunning Aesthetics with CSS3

[194]

Read the W3C information on repeating gradients at: http://dev.
w3.org/csswg/css3-images/#repeating-gradients

There's one more way of using background gradients I'd like to share with you.

Background gradient patterns
It no doubt depends on your own design sensibilities but although I've often used
subtle linear gradients in designs I've found less practical use for radial gradients
and repeating gradients. However, clever folks out there have harnessed all these
background techniques together to create background gradient patterns. Let's look
at an example. Instead of the repeating radial gradient I just added to the body,
I'll add this:

body {
 background-color:white;
 background-image:
 radial-gradient(hsla(0, 0%, 87%, 0.31) 9px, transparent 10px),
 repeating-radial-gradient(hsla(0, 0%, 87%, 0.31) 0,
 hsla(0, 0%, 87%, 0.31) 4px, transparent 5px,
 transparent 20px, hsla(0, 0%, 87%, 0.31) 21px,
 hsla(0, 0%, 87%, 0.31) 25px, transparent 26px,
 transparent 50px);
 background-size: 30px 30px, 90px 90px;
 background-position: 0 0;
}

Chapter 6

[195]

Here's what that gives me in the browser:

How about that? Just a few lines of CSS3 and we have an easily editable, scalable
background pattern by using the background gradient techniques we've already
looked at.

Stunning Aesthetics with CSS3

[196]

CSS Ninja, Lea Verou has collated a growing resource of CSS3 background patterns,
available at http://lea.verou.me/css3patterns/.

Responsive considerations for CSS3
It's worth remembering that different declarations can be used for different
viewports. For example, although I might not mind the way the gradient pattern
looks on smaller viewports:

http://lea.verou.me/css3patterns/

Chapter 6

[197]

I may choose not to use it for larger viewports (for example 768 px wide and
greater). I can therefore just create a specific rule for the background gradient
using media queries:

@media screen and (max-width: 768px) {
 body {
 background-color:white;
 background-image:
 radial-gradient(hsla(0, 0%, 87%, 0.31) 9px, transparent 10px),

Stunning Aesthetics with CSS3

[198]

 repeating-radial-gradient(hsla(0, 0%, 87%, 0.31) 0,
 hsla(0, 0%, 87%, 0.31) 4px, transparent 5px, transparent 20px,
 hsla(0, 0%, 87%, 0.31) 21px, hsla(0, 0%, 87%, 0.31) 25px,
 transparent 26px, transparent 50px);
 background-size: 30px 30px, 90px 90px;
 background-position: 0 0;
 }
}

Remember that media queries will allow you to specify every element differently for
different viewports if you wish. It's all about presenting the best experience.

Writing CSS3 easily with CSS pre-processors
CSS3 rules currently require multiple vendor prefix properties. An
alternative to storing clippings of these prefixes for every declaration,
or using a JavaScript file to add prefixes in the browser are CSS pre-
processors like SASS and LESS. For example, using SASS with the
Compass plugin allows you to write a simple box shadow rule like this:
element { @include box-shadow; }. When the CSS is generated,
it includes a full stack of vendor specific rules along with the relevant
Internet Explorer hacks (if available). If this wasn't a big enough reason
to take a look, consider that pre-processors also add the ability to use
variables and programming conventions like if/while statements. Find
out more about SASS at http://sass-lang.com and LESS at http://
lesscss.org

Bringing CSS3 properties together
Until now, we've largely been looking at abstract implementations of various
CSS3 features. Let's use them together now to create our THESE SHOULD HAVE
WON>> link. On the original Photoshop composite file for the AND THE WINNER
ISN'T website, the button text uses custom typography, which we've already dealt
with in Chapter 5, CSS3: Selectors, Typography, and Color Modes. However, it also has a
red gradient background with rounded corners and a drop shadow behind it. This is
what we have defined in the stylesheet currently:

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
}

Chapter 6

[199]

First, let's add a solid background color for older browsers. That way, should they
be unable to render the gradient, they will at least get a solid red background. I've
purposely used a HEX value here because if the older browser doesn't understand
gradients, it's unlikely to support RGB and HSL color modes:

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
}

Next, let's add our rounded corners. Note that, as in the rest of this chapter, for all
the CSS3 properties I'll be adding it may be necessary to define vendor prefixes. I
have omitted them here for the sake of brevity:

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
}

Here's what we've got at this point:

Now, let's make the text white (again, as I want this viewable on older browsers, I've
stuck to a simple color definition) and add padding (you could use percentage based
padding too) so there's always a little space around the text:

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
 color: white;
 padding: 30px;
}

Stunning Aesthetics with CSS3

[200]

Here's what that gives us:

At this point the padding is encroaching on the text above so we'll add a float:
left declaration along with the gradient:

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
 color: white;
 padding: 30px;
 float: left;
 background: linear-gradient(90deg, #b01c20 0%, #f15c60 100%);
}

Now it's starting to take shape in the browser:

Besides adding a little margin above, I'll also go ahead and add the box shadow:

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
 color: white;
 padding: 30px;
 float: left;
 background: -moz-linear-gradient(90deg, #b01c20 0%,
 #f15c60 100%);
 margin-top: 30px;
 box-shadow: 5px 5px 5px hsla(0, 0%, 26.6667%, 0.8);
}

Chapter 6

[201]

And a quick check in the browser reveals we're almost done:

Now, although it's not in the Photoshop file, I'm going to add a little text-shadow
and a thin white border, just to give it a slightly embossed feel. That's the beauty of
using CSS rather than image files—it's easy to evaluate changes on the fly!

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
 color: white;
 padding: 30px;
 float: left;
 background: -moz-linear-gradient(90deg, #b01c20 0%,
 #f15c60 100%);
 margin-top: 30px;
 box-shadow: 5px 5px 5px hsla(0, 0%, 26.6667%, 0.8);
 text-shadow: 0px 1px black;
 border: 1px solid #bfbfbf;
}

Now here's how our button looks in Firefox 8:

The only issue left is that our double angle quotes symbol (» in HTML) in
the Photoshop file is in a different font from the main text. I don't feel that loading
an extra font for the single character is worthwhile in this instance, so I'm going
to wrap that symbol in an inline tag so that I can increase the size. Here's the
amended markup:

these should have won »

Stunning Aesthetics with CSS3

[202]

Additionally, here's the extra CSS rule to adjust the size:
#content a span {
 font-size: 1.3em;
}

Which finishes things off nicely:

What's great about this as CSS3, rather than an image, is that it can contain whatever
content is needed, and it will never break up:

Chapter 6

[203]

Multiple background images
A common design requirement is to build a page with a different background
image at the top of the page than at the bottom. Or perhaps different images for the
top and bottom of a content section within a page. It seems such a straightforward
requirement, that it's understandable to assume this could be easily achieved with
CSS. However, with CSS2.1, achieving the effect typically required additional
markup. For example, until CSS3, this is how I've always solved the problem:

<body class=”headerBackgroundHere”>

<div class=”footerBackground”>
 <div id=”container”>
 <header>
 // Header content here	
 </header>
 <div id=”main” role=”main”>
 // Main content here
 </div>
 <footer>
 // Footer content here
 </footer>
 </div>

</div> <!--! end of .footerBackground -->

</body>

You'll notice the entire content container (which is the div with an id of container)
is wrapped in a div with the class footerBackground. With this in place we can
target a CSS rule to set the background image for the top of the page on the body tag:

body {
 background-image: url("../img/topSlice.png”);
 background-repeat: repeat-x;
}

Then another rule for footerBackground. This is where we'll place the image we
want for the bottom of the page.

.footerBackground {
 background-image: url("../img/bottomSlice.png”);
 background-repeat: repeat-x;
 background-position: bottom;
}

This technique works well and consistently across most browsers. However, I'm
never a fan of adding additional markup merely to solve presentational problems.

Stunning Aesthetics with CSS3

[204]

Thankfully this problem is easily solved with the CSS3 as it allows multiple
backgrounds for an element (part of the CSS Backgrounds and Borders Module
Level 3). It's well supported, with Internet Explorer 8 and below being the only
notable exceptions. Here's the syntax:

background:
 url('../img/1.png'),
 url('../img/2.png'),
 url('../img/3.png');

As with the stacking order of multiple shadows, the image listed first appears nearest
to the 'top' in the browser. You can also add a general color for the background in the
same declaration if you wish, like this:

background:
 url('../img/1.png'),
 url('../img/2.png'),
 url('../img/3.png') left bottom, black;

Specify the color last and this will show below every image specified above.

Browsers that don't understand the multiple backgrounds rule (such as Internet
Explorer 8 and below) will ignore the rule altogether so you may wish to declare a
'normal' background property immediately before a CSS3 multiple background rule
as a fallback for older browsers.

With the multiple backgrounds, as long as you're using PNG files with transparency,
any partially transparent background images that sit on top of another will show
through below. However, background images don't have to sit on top of one another,
nor do they all have to be the same size.

Background size
To set different sizes for each image, use the background-size property. When
multiple images have been used, the syntax works like this:

background-size: 100% 50%, 300px 400px, auto;

The size values (first width, then height) for each image are declared, separated
by commas in the order they are listed in the background property. As in the
example above, you can use percentage or pixel values for each image alongside the
following:

•	 auto: which sets the element at its native size
•	 cover: which expands the image, preserving its aspect ratio, to cover the area

of the element

Chapter 6

[205]

•	 contain: which expands the image to fit its longest side within the element
while preserving the aspect ratio

Background position
Another thing that's possible is to specify different positions for the different images.
We could do that by amending the rule like this:

background:
 url('../img/1.png') center,
 url('../img/2.png'),
 url('../img/3.png') left bottom, black;

Where no position is declared, as in the second image, the default position of top left
is used.

Background shorthand
There is a shorthand method of combining the different background properties
together. However, my experience so far has been that it produces erratic results.
Therefore, I tend to use the longhand method and declare the multiple images first,
then the size, and then the position.

Read the W3C documentation on multiple background elements here:
http://www.w3.org/TR/css3-background/#layering

Read about background sizing here: http://www.w3.org/TR/css3-
background/#the-background-size

And background positions here: http://www.w3.org/TR/css3-
background/#the-background-position

More CSS3 features
We've by no means covered all the goodies CSS3 has to offer. However, these are
the ones that seem to be finding most traction in the real world. They are also the
techniques I feel most benefit generating visual effects economically and flexibly for
responsive designs. However, as always, keep an eye on the various CSS3 modules
as there's sure to be something that will ignite your interest beyond the slice we've
covered here.

http://www.w3.org/TR/css3-background/#layering
http://www.w3.org/TR/css3-background/#layering

Stunning Aesthetics with CSS3

[206]

Sizeable icons which are perfect for
responsive designs
Smart people are already extending what's possible with CSS3 to great effect. One
technique I've seen implemented that I love and now use regularly myself is using
@font-face icons in a design.

"What are they?” I hear you cry. Well, my inquisitive friend, I'll tell you. Remember we
used the CSS3 @font-face rules in the previous chapter to apply custom typography
to our design? @font-face icons are merely fonts specifically made to create
commonly used icons. Instead of using lots of separate graphics files for each icon, or
even grouping them together into a single, larger sprite image, @font-face icons allow
you to apply a single font for every included icon (that's just one http request—woo
hoo!). What's more, as it's a font, it scales beautifully—perfect for responsive designs.
Fico is a great example, check it out here: http://fico.lensco.be/.

Chapter 6

[207]

Summary
In this chapter we've used a broader selection of CSS3's new features. CSS3's
background gradients have enabled us to create some great looking background
effects with pure code. We even used them to create background patterns. We've
also learned how to use text-shadows to create an embossed effect on text and
box-shadows to add drop-shadow effects to the outside and inside of elements.

When designing responsively, creating these aesthetic effects with pure CSS3 is
a huge bonus; it means elements will not break out of any constraints usually
associated with more resource heavy and inflexible images. That said, there are
times when the use of images is unavoidable. But CSS3 gives us greater flexibility
here too. For example, in this chapter we used CSS3's multiple background images
feature to add multiple backgrounds and position them independently on the page;
a technique that negates the need for extra markup, as has historically always been
required. And remember, we're mostly using these effects to add visual flourishes
to our responsive design, the kind of subtleties and niceties that modern browsers,
regardless of their viewport size, can enjoy. Whilst tiring older browsers like Internet
Explorer can't render them, they equally do them no harm.

So far however, all our forays into CSS3 have been static; elements that sit in place
and remain stationary on the page in one state or another. However, CSS3 can do
much more. In the next chapter we'll look at ways to transition from one state to
another and take our CSS where it's never gone before: the domain of animation.

CSS3 Transitions,
Transformations, and

Animations
In the last two chapters we looked at some of the new features and functionality that
CSS3 provides. However, until now, everything we have looked at has been static.
But CSS3 can do more.

At present, chances are, if you need to animate elements on a web page you'll either
write your own JavaScript to perform the required action or turn to a popular
JavaScript library like jQuery to do the heavy lifting. However, someone involved
with CSS3 clearly has issues with JavaScript's ubiquity in this area and they're
looking to encroach on JavaScript's dominance. While CSS3 isn't likely to usurp
jQuery or the like anytime soon, it's perfectly capable of things like smoothing
transitions (for example, on mouse hover) and moving elements around the screen.
This is great news for us, as it means for the growing number of devices sporting
modern browsers (recent smart phones for example), we can use CSS to provide
animations rather than relying on JavaScript. The upshot: you can probably scratch
'learn how to animate elements with jQuery' off the 'to do' list as we can now do
all that fun stuff in pure CSS. As ever, these CSS3 features don't break anything for
browsers lacking the features; they'll just skip over the rules they don't understand
like they weren't there.

In this chapter, we'll cover:

•	 What CSS3 transitions are and how we can use them
•	 How to write a CSS3 transition and its shorthand syntax
•	 CSS3 transition timing functions (ease, cubic-bezier, and so on)

CSS3 Transitions, Transformations, and Animations

[210]

•	 Fun transitions for responsive web sites
•	 What CSS3 transformations are and how we can use them
•	 Understanding different 2D transformations (scale, rotate, skew, translate,

and so on)
•	 Dabbling with 3D transformations
•	 Animating with CSS3 (using keyframes)

What CSS3 transitions are and how we
can use them
When styling hyperlinks in CSS, it's common practice to create a hover state; an
obvious way to make users aware that the item they are hovering over is a link.
They're of less relevance to the growing number of touch screen devices but for
everyone else, they're a great and simple interaction between website and user.

Traditionally, using only CSS, hover states are an on/off affair. There is one state
as the default, that instantly changes to a different state on hover. However, CSS3
transitions, as the name implies, allow us to transition between one state and
another. It's not specific to hover states but let's start there.

In the previous chapter, we created a CSS3 button with a red gradient background.
This is the CSS3 used (with the additional vendor prefixes removed for brevity):

#content a {
 text-decoration: none;
 font: 2.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
 color: #ffffff;
 padding: 3%;
 float: left;
 background: linear-gradient(90deg, #b01c20 0%, #f15c60 100%);
 margin-top: 30px;
 box-shadow: 5px 5px 5px hsla(0, 0%, 26.6667%, 0.8);
 text-shadow: 0px 1px black;
 border: 1px solid #bfbfbf;
}

Chapter 7

[211]

Let's add a hover state:

#content a:hover {
 border: 1px solid #000000;
 color: #000000;
 text-shadow: 0px 1px white;
}

And here are the two states, first the default:

And then here's the hover state:

It's a simple change of text, text-shadow, and border color on hover. So, as you might
imagine, with the current CSS, hovering the mouse over snaps from the first state
(white text) button to the second (black text); it's an on/off affair. Let's add a little
CSS3 magic to our first rule:

#content a {
 /*…existing styles…*/
 transition: all 1s ease 0s;
}

Now when we hover over the button, the text, text-shadow, and border color all
transition smoothly from one to the other. You'll notice the transition is applied
to the original element, not the hover state. This is so that different states such as
:active can also have different styles set and enjoy the transition. So remember, the
transition declaration is added to the element it transitions away from. But how do
transitions actually work?

CSS3 Transitions, Transformations, and Animations

[212]

The properties of a transition
A transition can be declared using up to four properties or a single shorthand
declaration including all four:

•	 transition-property: the name of the CSS property to be transitioned
(such as background-color, text-shadow, or all to transition every
possible property).

•	 transition-duration: the length of time over which the transition should
occur (defined in seconds, for example .3s, 2s, or 1.5s).

•	 transition-timing-function: how the transition changes speed during
the duration (for example ease, linear, ease-in, ease-out, ease-in-out,
or cubic-bezier).

•	 transition-delay: an optional value to determine a delay before the
transition commences. Alternatively, a negative value can be used to
commence a transition immediately but part way through its transition
'journey'.

Used separately, the various transition properties can be used to create a transition
as follows:

#content a {
 ...(more styles)...
 transition-property: all;
 transition-duration: 1s;
 transition-timing-function: ease;
 transition-delay: 0s;
}

The transition shorthand property
As we've already seen however, we can roll these individual declarations into a
single, shorthand version:

transition: all 1s ease 0s;

One important point to note when writing the shorthand version is that the first
timing value given is always taken to be the transition-duration. The second
timing value is taken to be the transition-delay.

Chapter 7

[213]

As ever, it's important to use vendor prefixes. For example, a stack of vendor-
prefixed versions of the prior shorthand declaration would be as follows:

-o-transition: all 1s ease 0s;
-ms-transition: all 1s ease 0s;
-moz-transition: all 1s ease 0s;
-webkit-transition: all 1s ease 0s;
transition: all 1s ease 0s;

We've placed the non-prefixed 'official' version last so it will overwrite the others
when browsers have fully implemented the standard.

Limitations of transitions
There are some caveats to using transitions; some properties can't be
transitioned, despite the specifications (even the latest editor's draft
at http://dev.w3.org/csswg/css3-transitions/) saying it
should be possible. For example, the background-gradient property.
However, you can, in theory, transition all these properties (http://
www.w3.org/TR/css3-transitions/#properties-from-css-).

Transition different properties over different periods
of time
Where a rule has multiple properties declared you don't have to transition all of
them in the same way. Consider this rule:

#content a {
 ...(more styles)...
 transition-property: border, color, text-shadow;
 transition-duration: 2s, 3s, 8s;
}

Here we have specified with the transition-property that we'd like to transition the
border, color, and text-shadow. Then with the transition-duration declaration, we are
stating that the border should transition over 2 seconds, the color over 3 seconds, and
the text-shadow over 8 seconds. The comma-separated durations match the comma-
separated order of the transition properties.

http://www.w3.org/TR/css3-transitions/#properties-from-css-
http://www.w3.org/TR/css3-transitions/#properties-from-css-

CSS3 Transitions, Transformations, and Animations

[214]

Understanding timing functions
Most of the transition properties are self-explanatory. We've covered the list of
properties that can be (or should be!) transitioned. Durations and delays are set
with seconds (for example 2s) so they're simple enough to understand but the one
property that can cause some head scratching is the timing functions. Just what do
ease, linear, ease-in, ease-out, ease-in-out, and cubic-bezier actually do?
Each of them is actually a cubic-bezier-curve—essentially the same as an easing
function. I realize that perhaps doesn't mean much to you either. So… this is one of
those situations where words (and certainly this author's power to wield them well
enough) struggle to offer a satisfactory explanation—much like if you have to give
your other half a satisfactory explanation for why you've forgotten their birthday!
Instead, I recommend you head over to http://cubic-bezier.com/.

http://cubic-bezier.com/

Chapter 7

[215]

This site lets you compare timing functions and see the difference each one makes.
However, even if you can write your own cubic-bezier curves blindfolded (while
also counting backwards from a thousand in Mandarin), the likelihood is, for most
practical situations, it makes little difference. Here's why…

Like any enhancement, it's necessary to employ transition effects subtly. For 'real
world' implementations, transitions that occur over too great a period of time tend to
make a site 'feel' slow. For example, navigation links that take 5 seconds to transition
are going to frustrate, rather than 'Wow!' your users. Therefore, unless there is a
compelling reason to do so, using the default transition (ease) over a short interval
(a maximum of 1 second is my own preference) is often best.

Fun transitions for responsive web sites
Once you become a responsive web design junkie, you'll find yourself constantly
resizing the browser window on websites you visit to see if it's responsive. Keep in
mind this habit infuriates 'normal' people, so best only do it in private.

A great website I often visit that discusses CSS techniques is Chris Coyier's excellent
http://css-tricks.com. After a re-design I happened to resize the browser
window and smiled knowingly as the different on-screen elements whizzed about
the screen. What magic had Chris employed to bring this effect about? Something
similar to this:

* {
 transition: all 1s;
}

Here, we are using the CSS universal selector * to select everything and then setting
a transition on all elements over 1 second (1s). As we have omitted to specify the
timing function, ease will be used by default and there will be no delay as again,
a default of none is assumed if an alternative value is not specifically added. The
effect? Well, most things (links, hover states, and the like) behave as you would
expect. However, because everything transitions, it also includes any rules within
media queries, so as the browser window is resized, elements sort of flow from one
state to the next. Is it essential? Absolutely not! Is it fun to watch and play around
with? Certainly!

CSS3 Transitions, Transformations, and Animations

[216]

CSS3 2D transformations
Despite sounding similar, CSS transformations (both 2D and 3D variants) are
entirely different to CSS transitions. Think of it like this: transitions smooth the
change from one state to another, while transformations are defining what the
element will become. My own (admittedly childish) way of remembering it is
like this:

Imagine a Transformer robot like Optimus Prime. He's a robot that becomes
something else (transforms) over a period of time (the transition) into a truck.

In case that tangent muddied the waters further (or you don't have a clue who
Optimus Prime is) let's just dig in. Let's add a 2D transition to the hover state of the
navigation links on the AND THE WINNER ISN'T site:

nav ul li a:hover {
 transform: scale(1.7);
}

Now, in a modern browser, hovering over a link produces this effect:

We've told the browser that when this element is hovered over, we want the element
to scale to 1.7 times its original value.

Now, if you're attempting to add this rule to an element in Safari, be aware that it
requires the main element to be displayed as a block. For example:

nav ul li a {
 height: 42px;
 text-decoration: none;
 text-transform: uppercase;
 color: black;
 text-shadow: 0 1px 0 hsla(0, 0%, 100%, 1.0);
 font: 1.875em/42px 'BebasNeueRegular';
 display: block;
}

Otherwise nothing happens, which is, you know, rubbish.

Chapter 7

[217]

What can we transform?
There are two groups of CSS3 transforms available: 2D and 3D. 2D variants are
far more widely implemented, browser wise, and certainly easier to write so let's
look at those first. The CSS3 2D Transforms Module allows us to use the following
transformations:

•	 scale: used to scale an element (larger or smaller)
•	 translate: move an element on the screen (up, down, left, and right)
•	 rotate: rotate the element by a specified amount (defined in degrees)
•	 skew: used to skew an element with its X and Y co-ordinates
•	 matrix: allows you to move and shape transformations with pixel precision

Let's try each of these and see what we can achieve.

scale
We've already looked at this transform above. However, besides the positive values
we've already used, it's worth knowing that by using values below 1, we can shrink
elements; the following will shrink the element to half its size:

transform: scale(0.5);

translate
transform: translate(40px, 0px);

translate tells the browser to move the element by an amount, defined in either
pixels or percentages. The syntax is applied first from the left to the right (40px
here) and then from the top to the bottom (0px here so it stays in line with the other
navigation elements). Positive values given within parentheses move the element
right or down; negative values move it left or up. So using this declaration on our
navigation hover state results in this—our link shifting 40 pixels to the right when
hovered over:

CSS3 Transitions, Transformations, and Animations

[218]

rotate
transform: rotate(90deg);

rotate allows you to rotate an element. In this example, we've amended the hover
link to rotate 90 degrees. In the browser, here's what happens:

The value in parentheses should always be in degrees (for example, 90deg).
That doesn't stop you going crazy—you can make elements spin by specifying
a value like the following:

transform: rotate(3600deg);

This will rotate the element 10 times in a complete circle. Practical uses for this
particular value are few and far between but you know, if you ever find yourself
designing websites for a windmill company it may come in handy!

skew
If you've spent any time working in Photoshop, you'll have a good idea what skew
will do. It allows an element to be skewed on either or both of its axes.

transform: skew(10deg, 2deg);

Setting this on the hover link produces the following effect on hover:

Chapter 7

[219]

The first value is the skew applied to the X axis (in our example, 10deg), while the
second (2deg) is for the Y axis. Omitting the second value means any value will be
applied to the X axis (horizontal). For example:

transform: skew(10deg);

This is perfectly valid but will only apply skew to the X axis. Values should always
be given in degrees. While positive values always apply clockwise, using negative
values will rotate the element counter-clockwise.

matrix
So, on the subject of over-rated films. What's that? You want to know about the CSS3
matrix, not the film? Oh, okay…

The matrix transform syntax looks scary:

transform: matrix(1.678, -0.256, 1.522, 2.333, -51.533, -1.989);

It essentially allows you to combine a number of other transforms (scale, rotate,
skew, and so on) into a single declaration. The above declaration results in the
following effect in the browser:

Now, I like a challenge like the best of them (unless, you know, it's sitting
through Moulin Rouge) but I'm sure we can agree that syntax is a bit testing.
It gets worse when you look at the specification and realize that it involves
mathematics knowledge to fully understand: http://www.w3.org/TR/css3-2d-
transforms/#cssmatrix-interface.

CSS3 Transitions, Transformations, and Animations

[220]

Matrix transformations for cheats and dunces
I'm not a mathematician by any stretch of the imagination so when faced
with the need to create a matrix based transformation, I cheat. If your
mathematical skills are also found wanting, I'd suggest heading over to
http://www.useragentman.com/matrix/.

The Matrix Construction Set website allows you to drag and drop the element
exactly where you want it and then includes good ol' copy and paste code
(including vendor-prefixes) for your CSS file.

http://www.useragentman.com/matrix/

Chapter 7

[221]

transform-origin property
Alongside the aforementioned transformations, you can use the transform-origin
property to amend the point from which transforms are applied:

transform: rotate(45deg);
transform-origin: 20% 20%;

Setting this on our navigation links results in the following when hovered over:

The transform-origin property comes in useful as by default, transformations are
applied to the center of an element. This provides a handy means of offsetting it and
can produce some great results.

Full information on the transform-origin property can be found here:
http://www.w3.org/TR/css3-2d-transforms/#transform-
origin-property

That covers the essentials of 2D transforms. They are far more widely implemented
in the browser landscape than their 3D brethren and when used sensibly, provide
a light-weight means of providing visual flourishes to reward users with modern
browsers.

Read the full specification on CSS3 2D Transforms Module Level 3 here:
http://www.w3.org/TR/css3-2d-transforms/

Dabbling in CSS3 3D transformations
Although already supported by Webkit browsers (Safari and Chrome) and Firefox
10+, CSS3 3D transforms won't be supported in IE until version 10. However, despite
a lack of support in 'desktop' browsers, thanks to their origin in Webkit, they are well
supported in Android (v3 onwards) and iOS (all versions).

CSS3 Transitions, Transformations, and Animations

[222]

Suffice to say, from this point on, you'll be best off checking your results in a Webkit
based browser such as Chrome or Safari (unless, of course, you're reading this at a
time when your browser of choice does support 3D transformations).

Now, we're just going to dabble in 3D transformations here. They're a vast subject
and the possibilities are virtually infinite. I imagine by the time they are supported
widely, most of us will reach for them to create Carousel effects, rather than relying
on JavaScript solutions from the likes of jQuery. However, until then, let's just open
the lid and take a peek at what's possible.

Let's imagine we're making a simple quiz for the AND THE WINNER ISN'T
website. It will be composed of images of movie posters and you have to guess
whether they are considered 'Hot or Not' by the world's most respected film critic
(yep, that's me). Hovering over the images (or tapping on a touch screen) will reveal
the answer.

Here's the relevant section of markup; note that I've omitted the repetition of the
markup for each image as they follow exactly the same format:

<section class="Qcontainer">
 <div class="film">
 <div class="face front">

 </div>
 <div class="face back"><h5>HOT!</h5></div>
 </div>
</section>

And now here's the CSS. Note, as Webkit is the browser with the greatest support for
3D transformations, the declarations here all use that specific vendor prefix. As ever,
when implementing in the real world, vendor-prefixes are your friend.

.Qcontainer {
 height: 100%;
 width: 28%;
 position: relative;
 -webkit-perspective: 800;
 float: left;
 margin-right: 2%;
}
.film {
 width: 100%;
 height: 15em;
 -webkit-transform-style: preserve-3d;
 -webkit-transition: 1s;

Chapter 7

[223]

}
.Qcontainer:hover .film {
 -webkit-transform: rotateY(180deg);
}
.face {
 position: absolute;
 -webkit-backface-visibility: hidden;
}
.back {
 width: 66%;
 height: 127%;
 -webkit-transform: rotateY(180deg);
 background: #3b3b3b;
 background: -webkit-linear-gradient(top,
 rgba(0,0,0,0.65) 0%,
 rgba(0,0,0,0) 100%);
 padding: 15%;
}

With that in place, hovering over the relevant image makes the poster flip and the
simple HOT or NOT answer is revealed.

CSS3 Transitions, Transformations, and Animations

[224]

Breaking down the 3D effect
Let's go through the code to understand how this effect is achieved.

The first important point is to set the perspective on the parent element. This
activates 3D space:

.Qcontainer {
 height: 100%;
 width: 28%;
 position: relative;
 -webkit-perspective: 200;
 float: left;
 margin-right: 2%;
}

The larger this perspective value, the greater the virtual depth of 3D space from
your viewing point. Therefore, for a subtler 3D effect, increase the value. For a more
dramatic effect, decrease it.

Chapter 7

[225]

The next noteworthy point:

.film {
 width: 100%;
 height: 15em;
 -webkit-transform-style: preserve-3d;
 -webkit-transition: 1s;
}

The first perspective declaration added to the .Qcontainer class only applies to the
first direct descendent (the div with a class of .film in this example). Therefore, to
pass on the parent's perspective we use the preserve-3d value.

Now, we'll add a rule to flip the .film div when the .Qcontainer section is
hovered over:

.Qcontainer:hover .film {
 -webkit-transform: rotateY(180deg);
}

The next rule deals with hiding the opposite side of the poster when it's flipped:

.face {
 position: absolute;
 -webkit-backface-visibility: hidden;
}

The absolute positioning on the .face is necessary to position it on top of the
.back DIV:

.back {
 width: 66%;
 height: 127%;
 -webkit-transform: rotateY(180deg);
 background: #3b3b3b;
 background: -webkit-linear-gradient(top,
 rgba(0,0,0,0.65) 0%,
 rgba(0,0,0,0) 100%);
 padding: 15%;
}

Finally, we also add a simple rotateY on the .back DIV. Without this, the .back
DIV effectively shows through the front.

And that's all there is to it. Now, hovering over any of the posters flips them in a
rather dramatic fashion.

CSS3 Transitions, Transformations, and Animations

[226]

However, for any non-Webkit browsers the page functionality is decidedly lame:

Well, we can provide an acceptable fallback for non-Webkit browsers with a little
CSS of old:

.front {
 z-index: 5;
}
.Qcontainer:hover .front {
 z-index: 0;
}

First, we set a z-index of 5 on the .front DIV so that it sits above the .back DIV
by default:

.front {
 z-index: 5;
}

Chapter 7

[227]

Now, when the .Qcontainer section is hovered over, we'll set the z-index to 0 so it
once more sits behind the .back DIV:

.Qcontainer:hover .front {
 z-index: 0;
}

Now we get a functional question and answer functionality in non-3D transform
capable browsers, sans the fancy 3D effect.

3D transformations not ready for prime time
In my experience, at present, many of the 3D transforms don't play happily with
percentage sizes (for example, amending the viewport width with the prior example
makes things misbehave severely). So there's often quite a bit of tweaking to be done
to make them play happily within a responsive layout. Furthermore, as support is
currently so limited, 3D transformations seldom offer the most robust solution when
you're building a cross-browser site. So for now, I still err towards jQuery or similar
for this kind of functionality.

CSS3 Transitions, Transformations, and Animations

[228]

The possibilities of CSS 3D transforms are, however, extremely promising and when
browser support is extended, they offer the opportunity to move many of the fancy
effects we currently rely on JavaScript for, to be moved within our stylesheets.

Read about the latest W3C developments on CSS 3D Transforms at
http://dev.w3.org/csswg/css3-3d-transforms/

Animating with CSS3
If you've ever worked with Flash, you'll have an instant advantage when working
with CSS3 animations. CSS3 employs animation keyframing conventions found in
Flash and other timeline based applications.

Animations are also more widely implemented than 3D transforms. They are
supported in Firefox 5+, Chrome, Safari 4+, Android (all versions), iOS (all versions),
and due to be incorporated into Internet Explorer 10.

There are two components to a CSS3 animation; firstly a keyframes declaration and
then using that keyframe declaration in an animation property. Let's take a look.

In the previous section we made a simple flip effect for films that I consider HOT or
NOT. Well, the text on the reveal is pretty dull, so let's add a nice pulsing effect to
the answer that's revealed after the poster flips.

Firstly the keyframe rule:

@keyframes warning {
 0% {
 text-shadow: 0px 0px 4px #000000;
 }
 50% {
 text-shadow: 0 0 20px #000000;
 }
 100% {
 text-shadow: 0px 0px 4px #000000;
 }
}

I'm using the non-prefixed version of the code here so if things aren't happening
you'll probably need to add a full vendor-prefixed stack (@-webkit-keyframes
for example).

Chapter 7

[229]

Let's break this down:

@keyframes warning {
 0% {
 text-shadow: 0px 0px 4px #000000;
 }
 50% {
 text-shadow: 0 0 20px #000000;
 }
 100% {
 text-shadow: 0px 0px 4px #000000;
 }
}

First, we are specifying a @keyframes declaration. We are then giving this particular
keyframes declaration a name—warning in this instance. You can name them
however you like but as these keyframe declarations can be re-used on multiple
elements, name them accordingly.

You can set as many percentage points as you like (for example, 10, 20, 30, 40,
and so on) or if you'd rather, define the animation with from and to values. Be
warned however that Webkit browsers don't always play happily with from
and to values (preferring 0% and 100%):

@keyframes warning {
 from {
 text-shadow: 0px 0px 4px #000000;
 }
 50% {
 text-shadow: 0 0 40px #000000;
 }
 to {
 text-shadow: 0 0 4px #000000;
 }
}

In this instance I'm altering a text-shadow, starting and ending with the same
distance of 4px but going to 40px blur at 50%.

Now we have declared the keyframe, we can reference it with the animation property:

.back h5 {
 font-size: 4em;
 color: #f2050b;
 text-align: center;
 animation: warning 1.5s infinite ease-in;
}

CSS3 Transitions, Transformations, and Animations

[230]

After specifying the animation property, we define the particular keyframe rule
we want to use (warning in this case), we then specify the animation-iteration-
count (we've used infinite here so the animation continues continuously) and finally
the timing function (ease-in). A static image obviously fails to do this justice but
hopefully you can imagine the text shadow pulsing back and forth. View this in the
browser at http://www.andthewinnerisnt.com.

The shorthand property can accept all seven animation properties. In addition to
those used in the above example, it's also possible to specify animation-delay (for
example, if you wanted to delay when the animation starts), animation-play-state
(can be set to running or paused to effectively play and pause an animation) and
finally animation-fill-mode, which I confess, I've yet to find a need to use (the
default is none). Of course you don't need to use the shorthand property; you
can list them individually as follows:

Chapter 7

[231]

animation-name: warning;
animation-duration: 1.5s;
animation-timing-function: ease-in-out;
animation-iteration-count: infinite;
animation-play-state: running;
animation-delay: 0s;
animation-fill-mode: none;

As mentioned previously, it's simple to reuse the animation on other elements. For
example:

nav ul li a:hover {
 animation: warning 1.5s infinite ease-in;
}

This gives our navigation links the same pulsing effect. You can (hopefully) see the
STILLS/PHOTOS link in the screenshot below in the midst of the animation. Try it out
for yourself at http://www.andthewinnerisnt.com.

CSS3 Transitions, Transformations, and Animations

[232]

This is just one very simple example of using CSS animations. As virtually
anything can be key-framed, the possibilities are pretty endless. There are countless
showcases of CSS3 animation techniques around the web. Pages like http://
webdesignerwall.com/trends/47-amazing-css3-animation-demos should give
you more than enough inspiration to be getting on with.

Read about the latest developments on CSS3 Animations at
http://dev.w3.org/csswg/css3-animations/.

Putting CSS3 transformations and animations
together
Let's try one more thing to flex our CSS3 muscles. I'd like to try placing all the aside
sidebar images at varying angles and then animating them. The aim is to have them
'shake' when the page is first visited. Here's the markup for the sidebar:

<aside>
 <div role="complementary">
 <div class="sideBlock unSung">
 <h1>Unsung heroes...</h1>
 <img src="img/midnightRun.jpg"
 alt="Midnight Run" />
 <img src="img/wyattEarp.jpg"
 alt="Wyatt Earp" />
 </div>
 </div>
 <div role="complementary">
 <div class="sideBlock overHyped">
 <h1>Overhyped nonsense...</h1>
 <img src="img/moulinRouge.jpg"
 alt="Moulin Rouge" />
 <img src="img/kingKong.jpg"
 alt="King Kong" />
 </div>
 </div>
</aside>

http://webdesignerwall.com/trends/47-amazing-css3-animation-demos
http://webdesignerwall.com/trends/47-amazing-css3-animation-demos
http://dev.w3.org/csswg/css3-animations/
http://dev.w3.org/csswg/css3-animations/

Chapter 7

[233]

Now let's create the CSS3 to make this work. First, let's create a new keyframe
declaration called swing:

@-webkit-keyframes swing {
 from {
 transform: rotate(3deg);
 }
 20% {
 transform: rotate(7deg);
 }
 60% {
 transform: rotate(10deg);
 }
 80% {
 transform: rotate(7deg);
 }
 to {
 transform: rotate(3deg);
 }
}

The animation will use the 2D rotate transform to move the item from 3 degrees to 10
and back again. And here's how the animation property is added:

#quiz .unSung a:nth-child(odd) img {
 transform: rotate(3deg);
 animation: swing 0.1s 5 ease-in;
}
#quiz .unSung a:nth-child(even) img {
 transform: rotate(-3deg);
 animation: swing 0.1s 5 0.3s ease-in;
}
#quiz .overHyped a:nth-child(odd) img {
 transform: rotate(3deg);
 animation: swing 0.1s 5 0.2s ease-in;
}
#quiz .overHyped a:nth-child(even) img {
 transform: rotate(-3deg);
 animation: swing 0.1s 5 0.5s ease-in;
}

Let's break this down. Firstly by relying on CSS specificity we can target these rules
only at the QUIZ page (which has a <body id="quiz"> tag).

CSS3 Transitions, Transformations, and Animations

[234]

Before adding the animation property, I want to set a default rotate transform so that
they remain off-kilter when the animation completes. I don't want them all at the
same angle—so let's use the nth-child selector we learned about in Chapter 5, CSS3:
Selectors, Typography, and Color Modes to select the odd and even images and apply
different rotation transforms to them:

 #quiz .unSung a:nth-child(odd) img {
 transform: rotate(3deg);
 animation: swing 0.1s 5 ease-in;
}
#quiz .unSung a:nth-child(even) img {
 transform: rotate(-3deg);
 animation: swing 0.1s 5 0.3s ease-in;
}
#quiz .overHyped a:nth-child(odd) img {
 transform: rotate(3deg);
 animation: swing 0.1s 5 0.2s ease-in;
}
#quiz .overHyped a:nth-child(even) img {
 transform: rotate(-3deg);
 animation: swing 0.1s 5 0.5s ease-in;
}

Then the animation property is added for each instance. You'll notice slight
variations in each of the rules. The shorthand property also takes into account that
the second time value given (0.5s) is assigned to the animation delay. By utilizing
this value we can effectively fire off each different instance separately.

#quiz .overHyped a:nth-child(even) img {
 transform: rotate(-3deg);
 animation: swing 0.1s 5 0.5s ease-in;
}

Chapter 7

[235]

Again, when writing about animations, it's a little difficult to convey the effect. If
you're not near an Internet connection, the best I can tell you is that the films rapidly
shake from side to side and then settle off-kilter as shown in the following image:

CSS3 Transitions, Transformations, and Animations

[236]

Summary
It would be entirely possible to fill multiple books covering the possibilities of CSS
transformations, transitions, and animations. However, hopefully, by dipping your
toe in the water with this chapter you'll be able to pick up the basics and run with
them. Ultimately, by embracing the new features and techniques of CSS3 the aim
is to make a responsive design even leaner and richer than ever by using CSS3,
rather than JavaScript for some of the fancier aesthetic enhancements. In this chapter
we've learned what CSS3 transitions are and how to write them, got a handle on
timing functions like 'ease' and 'linear', and then used them to create simple but fun
effects with our responsive design. We then learned all about 2D transformations
like scale and skew and then how to use them in tandem with transitions. We also
looked briefly at 3D transformations before learning all about the power and relative
simplicity of CSS animations. You'd better believe our CSS3 muscles are growing!

However, if there's one area of site design that I always avoid where possible (as
desperately as I avoid Munich or King Kong if they're showing), it's making forms. I
don't know why, I've just always found making them a tedious and frustrating task.
Imagine my joy when I learned that HTML5 and CSS3 can make the whole form
building, styling, and even validating (yes, validating!) process easier than ever
before. I was quite joyous. As joyous as you can be about building web forms
that is. In the next chapter I'd like to share this knowledge with you.

Conquer Forms with
HTML5 and CSS3

Historically, forms have been a pain to style consistently cross-browser. They also
require JavaScript to validate the inputs and lack specific input types to deal with
everyday information like telephone numbers, e-mail addresses, and URLs.

The good news is that HTML5 largely solves these common problems. Let's
get familiar with the new HTML5 form features and see how they alleviate our
traditional form-building burden.

Using HTML5 to code our forms brings an additional benefit when used for
responsive designs; it once more allows us to trim our code base to provide the
leanest possible pages for our users. For the browsers that don't support these new
features, we have tools to patch them up and bring them in line.

In this chapter, we will learn how to use HTML5 to:

•	 Easily insert placeholder text into relevant form fields
•	 Disable auto-completion of form fields where necessary
•	 Set certain fields to be required before submission
•	 Specify different input types such as e-mail, telephone number, and URL
•	 Create number range sliders for easy value selection
•	 Insert date and color pickers
•	 Learn how we can use a regular expression to define an allowed form value
•	 Add a polyfill to provide support for less capable browsers
•	 Use CSS3 to easily and flexibly style an HTML5 form

Conquer Forms with HTML5 and CSS3

[238]

HTML5 forms
Here's the scenario: for our example And the winner isn't... responsive website. I've
decided that I'd like people to be able to vent their own frustration at the turkeys that
have been picking up the award gongs. We'll be adding a form that let's people tell
us about the film they feel shouldn't have won, and the film they feel should have
taken its place.

The following screenshot shows how our basic form looks, with just a little basic
styling in Chrome (v16):

Chapter 8

[239]

Besides standard form input fields and text areas, we have a number spinner, a
range slider, and placeholder text for many of the fields. If we 'focus' (select) on that
particular field the placeholder text is removed and if we lose focus without entering
anything (by clicking outside of the input box again) the placeholder text re-appears.
Furthermore, looking at this page in Google's Chrome browser, if we go ahead and
submit the form without entering anything, the following happens:

Conquer Forms with HTML5 and CSS3

[240]

So besides a couple of visual flourishes (the slider and spinner) we have some client-
side validation in place. As we've already noted, typically, to get a form working like
this would require JavaScript of one sort or another.

However, the great news is that all these user interface elements (including the
aforementioned slider, placeholder text, and spinner) and the form validation are
all being handled natively with HTML5 and no JavaScript is being employed. Let's
work through how the new form capabilities of HTML5 make this possible.

Understanding the component parts of
HTML5 forms
There's a lot going on in our HTML5 powered form, so let's break it down. The form
has been given an ID to aid styling and then an HTML5 hgroup for the title and
introductory text:

<form id="redemption" method="post">
 <hgroup>
 <h1>Oscar Redemption</h1>
 <h2>Here's your chance to set the record straight: tell us what
 year the wrong film got nominated, and which film should
 have received a nod...</h2>
 </hgroup>

The three sections of the form are then wrapped in a fieldset with a legend:

<fieldset>
<legend>About the offending film (part 1 of 3)</legend>
<div>
 <label for="film">The film in question?</label>
 <input id="film" name="film" type="text" placeholder="e.g. King
 Kong" required aria-required="true" >
</div>

You can see from the previous code snippet that each input element of the form is
also wrapped in a div with a label associated with each input. So far, so normal.
However, within this first input we've just stumbled upon our first HTML5 form
features. After common attributes of id, name, and type we have placeholder.

Chapter 8

[241]

placeholder
The placeholder attribute looks similar to the following:

placeholder="e.g. King Kong"

Placeholder text within form fields is such a common requirement that the folks
creating HTML5 decided it should be built into the markup and supported by
browsers. Simply include the placeholder attribute within your input and the value
will be displayed by default until the field gains focus. When it loses focus, if a value
has not been entered, it will re-display the placeholder text.

After the placeholder attribute, in the previous code snippet, the next HTML5 form
feature is the required attribute.

required
The required attribute looks similar to the following:

required aria-required="true"

In supporting HTML5 capable browsers, by adding the Boolean (meaning you
simply include the attribute or not) attribute required within the input element,
it indicates that a value is required. If the form is submitted without the field
containing the requisite information, a warning message should be displayed. The
message displayed is specific (both in content and styling) to both the browser and
the input type used. In addition to the HTML5 required value, in our example we
have also added the WAI-ARIA equivalent; aria-required="true". Unless there
is a good reason not to, include this WAI-ARIA version of the required attribute to
assist those using screen readers (if you remember, we looked at WAI-ARIA back in
Chapter 4, HTML5 for Responsive Designs).

Conquer Forms with HTML5 and CSS3

[242]

We've already seen what the required field browser message looks like in Chrome.
The following screenshot shows the same message in Firefox (9):

The required value can be used alongside many input types to ensure a value is
entered. Notable exceptions are the range, color, button, and hidden input types
as they almost always have a default value.

Another HTML5 form attribute that can be added to input fields is autofocus.

Chapter 8

[243]

autofocus
The HTML5 autofocus attribute allows a form to be loaded with a field already
focused (selected) ready for user input. The following code is an example of an input
field wrapped in a div with the autofocus attribute added at the end:

<div>
 <label for="search">Search the site...</label>
 <input id="search" name="search" type="search" placeholder="Wyatt
 Earp" autofocus>
</div>

Be careful when using this attribute. Cross browser confusion can reign if multiple
fields have the autofocus attribute added. For example, if multiple fields have
autofocus added, in Chrome (v16) the last field with the autofocus attributed
is focused on page load. However, Firefox (v9) does the opposite with the first
autofocus field selected.

It's also worth considering that some users use the space bar to quickly skip
down the content of a web page once it's loaded. On a page where a form has an
autofocused input field, it prevents this capability; instead it adds a space into the
focused input field. It's easy to see how that could be a source of frustration for users.

autocomplete
By default, most browsers aid user input by autocompleting the value of form
fields where possible. Whilst the user can turn this preference on and off within the
browser, we can now also indicate to the browser when we don't want a form or
field to allow auto-completion. This is useful not just for sensitive data (for example
bank account numbers) but also if you want to ensure users pay attention and enter
something by hand. For example, for many forms I complete, if a telephone number
is required, I enter a 'spoof' telephone number. I know I'm not the only one that does
that (doesn't everyone?) but I can ensure that users don't enter an autocompleted
spoof number by setting the autocomplete attribute to off on the relevant input field.
The following is a code example of a field with the autocomplete attribute set to off:

<div>
 <label for="tel">Telephone (so we can berate you if you're
 wrong)</label>
 <input id="tel" name="tel" type="tel" placeholder="1-234-546758"
 autocomplete="off" required aria-required="true" >
</div>

Conquer Forms with HTML5 and CSS3

[244]

We can also set entire forms (but not fieldsets) to not autocomplete by using the
attribute on the form itself. The following is a code example:

<form id="redemption" method="post" autocomplete="off">

list (and the associated datalist element)
This list attribute and the associated datalist element allow a number of
selections to be presented to a user once they start entering a value in the field. The
following is a code example of the list attribute in use with an associated datalist
wrapped in a div:

<div>
 <label for="awardWon">Award Won</label>
 <input id="awardWon" name="awardWon" type="text" list="awards">
 <datalist id="awards">
 <select>
 <option value="Best Picture"></option>
 <option value="Best Director"></option>
 <option value="Best Adapted Screenplay"></option>
 <option value="Best Original Screenplay"></option>
 </select>
 </datalist>
</div>

The value given in the list attribute (awards) refers to the id of the datalist.
Doing this associates the datalist with the input field. Although wrapping the
options with a <select> element isn't strictly necessary, it helps when applying
polyfills for older browsers.

Whilst the input field seems to be just a normal text input field, when typing in the
field, a selection box appears below it (in supporting browsers) with matching results
from the datalist. In the following screenshot, we can see the list in action (Firefox
v9). In this instance, as B is present in all options within the datalist, all values are
shown to select from:

Chapter 8

[245]

However, when typing D instead, only the matching suggestions appear as shown in
the following screenshot:

This doesn't prevent a user entering anything else they want in the input box but it
provides another great way of adding common functionality and user enhancement
through markup alone.

HTML5 input types
HTML5 adds a number of extra input types, which amongst other things, enable us
to limit the data that users input without the need for extraneous JavaScript code.
The most comforting thing about these new input types is that by default, where
browsers don't support the feature, they degrade to a standard text input box.
Furthermore, there are great polyfills available to bring older browsers up to speed.
We will look at these shortly. In the meantime, let's look at these new HTML5 input
types and the benefits they provide.

email
type="email" – supporting browsers will expect a user input that matches the
syntax of an e-mail address. In the following code example type="email" is used
alongside 'required' and 'placeholder':

<div>
 <label for="email">Your Email address</label>
 <input id="email" name="email" type="email" placeholder=
 "dwight.schultz@gmail.com" required aria-required="true">
</div>

When used in conjunction with required submitting a non-conforming input will
generate a warning message:

Conquer Forms with HTML5 and CSS3

[246]

Furthermore, many touch screen devices (for example Android, iPhone and so on)
change the input display based upon this input type. The following screenshot
shows how an input type="email" screen looks on the iPad. Notice the '@' symbol
for easy email address completion:

number
type="number" – supporting browsers expect a number to be entered in a number
type input field. They also supply spinner controls by default, allowing users to easily
click up or down to alter the value. The following is a code example:

<div>
 <label for="yearOfCrime">Year Of Crime</label>
 <input id="yearOfCrime" name="yearOfCrime" type="number" min="1929"
 max="2015" required aria-required="true" >
</div>

Chapter 8

[247]

And the following screenshot shows how it looks in a supporting browser
(Chrome v16):

Implementation of what happens if you don't enter a number varies. For example,
Chrome (v16) clears the field as soon as it loses focus without providing any
feedback whilst Firefox (v9) allows anything to be entered (defaulting to the
standard text input type). You'll notice in the previous code example, we have also
set a minimum and maximum allowed range similar to the following code:

type="number" min="1929" max="2015"

Numbers outside of this range (should) get special treatment. Browser
implementation is varied. For example, Chrome (v16) displays a warning whilst
Firefox (v9) does nothing.

url
type="url" – as you might expect, the URL input type is for URL values. Similar to
the tel and email input types, it behaves almost identically to a standard text input.
However, some browsers add specific information to the warning message provided
when submitted with incorrect values. The following is a code example including the
placeholder attribute:

<div>
 <label for="web">Your Web address</label>
 <input id="web" name="web" type="url" placeholder="www.mysite.com">
</div>

The following screenshot shows what happens when an incorrectly entered URL
field is submitted in Chrome (v16):

Conquer Forms with HTML5 and CSS3

[248]

Like type="email", touch screen devices often amend the input display based upon
this input type. The following screenshot shows how an input type="url" screen
looks on the iPad:

Notice the Go, forward slash (/), and .com keys? Because we've used a URL input
type they are presented by the device for easy URL completion (unless you're not
going to a .com site in which case, you know, thanks for nothing Apple).

tel
type="tel" is another contact information specific input type. tel is used to signify
to the browser that the form expects a telephone number entered within that field.
The following code is an example:

Chapter 8

[249]

<div>
 <label for="tel">Telephone (so we can berate you if you're
 wrong)</label>
 <input id="tel" name="tel" type="tel" placeholder="1-234-546758"
 autocomplete="off" required aria-required="true" >
</div>

Although, a number format is expected, on many browsers, even modern ones such
as Chrome v16 and Firefox v9, it merely behaves like a text input field. They are
currently failing to provide a suitable warning message on form submission when
incorrect values are entered.

However, better news is that like the email and url input types, touch screen
devices often thoughtfully accommodate this kind of input with an amended input
display for easy completion; here's the tel input when accessed with an iPad
(running iOS 5):

Conquer Forms with HTML5 and CSS3

[250]

Notice the lack of alphabet characters in the keyboard area? This makes it much
faster for users to enter a value in the correct format.

search
type="search" – although the search input type works in the same manner as a
standard text input, some browsers render the code with some subtle differences.
The following code is an example:

<div>
 <label for="search">Search the site...</label>
 <input id="search" name="search" type="search" placeholder=
 "Wyatt Earp">
</div>

The following screenshot shows how the previous code looks in Firefox (v9); notice
the default styling of the input box is rectangular:

However, Chrome (v16) renders that same code differently by default with rounded
edges and a quick clear button on the right:

pattern
pattern=""—Be afraid, be very afraid (remember what film that's the tagline from?) In
my opinion, this tagline could just as easily be applied to regular expressions. If you
don't know what regular expressions are, I dare say ignorance is bliss. If you do, and
worse still, you understand them, the following section is for you.

Chapter 8

[251]

Learn about regular expressions
If you've watched 'The Exorcist' alone, in a graveyard, at midnight, on
Halloween you're possibly ready to learn about regular expressions:
http://en.wikipedia.org/wiki/Regular_expressions.

The pattern attribute allows you to specify, via a regular expression, the syntax of
data that should be allowed in a given input field. The following code is an example:

<div>
 <label for="name">Your Name (first and last)</label>
 <input id="name" name="name" pattern="([a-zA-Z]{3,30}\s*)+[a-zA-
 Z]{3,30}" placeholder="Dwight Schultz" required aria-
 required="true" >
</div>

Such is my commitment to this book, I searched the Internet for approximately
458 seconds to find a regular expression that would match a first and last name
syntax. By entering the regular expression value within the pattern attribute, it
makes supporting browsers expect a matching input syntax. Then, when used in
conjunction with the required attribute, incorrect entries get the following treatment
in supporting browsers. In this instance I tried submitting the form without
providing a last name:

color
type="color" – the color input type produces a color picker in supporting
browsers, allowing users to select a color value in a Hexadecimal value. The
following code is an example:

<div>
 <label for="color">Your favorite color</label>
 <input id="color" name="color" type="color">
</div>

Conquer Forms with HTML5 and CSS3

[252]

Sadly, at present, browser support is scant. Only Opera (v11) seems to provide the
color picker. When the required color isn't initially shown, clicking the Other...
button at the bottom launches the OS's default color picker:

Date and time inputs
The thinking behind the new date and time input types is to provide a consistent
user experience for choosing dates and times. If you've ever bought tickets to an
event online, chances are that you have used a date picker of one sort or another.
This functionality is almost always provided via JavaScript (typically jQuery) but the
hope is to make this common necessity possible merely with HTML5 markup.

date
The following code is an example:

<input id="date" type="date" name="date" />

Similar to the color input type, native browser support is thin on the ground at
present, defaulting on most browsers to a standard text input box. Good ol' Opera
has already implemented the functionality though and the following screenshot
shows how that example code renders in Opera (v11):

Chapter 8

[253]

There are a variety of different date and type input types available. What follows is
a brief overview of the others.

month
The following code is an example:

<input id="month" type="month" name="month">

The interface allows the user to select a single month and provides the input as a
year and month for example 2012-06.

The following screenshot shows how it looks in the browser:

week
The following code is an example:

<input id="week" type="week" name="week">

When the week input type is used, the picker allows the user to select a single week
within a year and provides the input in the 2012-W47 format.

Conquer Forms with HTML5 and CSS3

[254]

The following screenshot shows how it looks in the browser:

time
The following code is an example:

<input id="time" type="time" name="time">

The time input type allows a value in the 24 hour format, for example 23:50.

It displays in supporting browsers with spinner controls but only allows relevant
time values:

datetime and datetime-local
The following code is an example:

<input id="datetime" type="datetime" name="datetime">

It looks similar to the following screenshot in Opera (v11):

Chapter 8

[255]

And looks even better on iOS devices as shown in the following screenshot:

Conquer Forms with HTML5 and CSS3

[256]

This input type creates date and time values (separated by a T) and then the time
zone (Z for UTC or a + or – for offset values). 25th October 2009 in UTC is shown as
follows:

2009-10-25T05:05:00Z

As UTC is, for most practical purposes, equivalent to GMT, it's easy to understand
offsets. For example, Pacific Standard Time (Los Angeles) is 8 hours behind GMT
(UTC -8 hours). That would be reflected in the input value as shown:

2009-10-25T05:05:00-8:00

The datetime-local version works in exactly the same manner as datetime but
omits the time zone information.

Changing the step increments
You can alter the step increments (granularity) for the spinner controls
of various input types with the use of the step attribute. For example,
to step 4 hours at a time, enter the value of 4 hours as 14400 seconds
(60 (seconds), multiplied by 60 (minutes), multiplied by 4 (hours)).
Following is the datetime example amended to use 4-hour steps in
the time selector:
<input id="datetime" type="datetime" name="datetime" step="14400">

range
The range input type creates a slider interface element. The following code is an
example:

<input id="howYouRateIt" name="howYouRateIt" type="range" min="1"
 max="10" value="5" >

And the following screenshot shows how it looks in Safari (v5.1):

The default range is from 0 to 100. However, by specifying a min and max value in
our example we have limited it to between 1 and 10.

Chapter 8

[257]

One big problem I've encountered with the range input type is that the current value
is never displayed to the user. Although the range slider is only intended for vague
number selections, I've often wanted to display the value as it changes. Currently,
there is no way to do this using HTML5. However, if you absolutely must display
the current value of the slider, it can be achieved easily with some simple JavaScript.
Amend the previous example to the following code:

<input id="howYouRateIt" name="howYouRateIt" type="range" min="1"
 max="10"value="5" onchange="showValue(this.value)"><span
 id="range">5

We've added two things, an onchange attribute and also a span element with the
id of range. Now, we'll add the following tiny piece of JavaScript somewhere in
the page:

<script>
 function showValue(newValue)
 {
 document.getElementById("range").innerHTML=newValue;
 }
</script>

All this does is gets the current value of the range slider and display it in the element
with an id of range (our span tag). With a tiny bit of CSS styling to make the value
bigger and red, the following screenshot shows the effect–with the value updating as
the slider is moved:

There are a few other form related features that are new in HTML5 but
as they relate more to building applications and backend development
they've not been featured here. To read the W3C Editor's draft of the
HTML5 form section visit: http://dev.w3.org/html5/spec-
author-view/forms.html#forms.

Conquer Forms with HTML5 and CSS3

[258]

How to polyfill non-supporting browsers
All this HTML5 form malarkey is all well and good. There seems however, to be
two things that put a serious dent in our ability to use them: disparity between how
supporting browsers implement the features and how to deal with browsers that
don't support the features at all. Thankfully, as ever, the web community has
found a way.

Back in Chapter 4, HTML5 for Responsive Designs I mentioned Modernizr (http://
www.modernizr.com), a fantastic JavaScript library that helps insert polyfills for
browsers lacking the requisite HTML5/CSS3 features. "Webshims Lib", written by
Alexander Farkas (http://afarkas.github.com/webshim/demos/) is built on top of
this and the ubiquitous jQuery library to only load the form polyfills (it can handle
poly-filling of other HTML5 features too) needed to make non-supporting browsers
handle our HTML5 forms. What's particularly great is the fact that as it utilizes
Modernizr's loading capabilities, the relevant polyfills are only added if needed. It
adds very little flab to a web page if being viewed by a browser that supports these
HTML5 features natively. Older browsers, although they need to load more code
(as they are less capable by default), get a similar user experience, albeit with the
relevant functionality created with the help of JavaScript.

But it isn't just older browsers that benefit. As we've seen, many modern browsers
haven't implemented the HTML5 form features fully. Employing Webshims Lib to
the page also fills any gaps in their capability. For example, Safari (5.1) doesn't offer
any warning when a HTML5 form is submitted with any required fields empty.
Whilst the form isn't actually submitted, no feedback is given to the user as to what
the problem is: hardly ideal. With Webshims Lib added to the page, the following
happens in the aforementioned scenario:

So when Firefox (v9) isn't able to provide a spinner for a type="number" attribute,
Webshims Lib provides a suitable jQuery powered fallback. In short, it's a great tool,
so let's get this beautiful little package installed and hooked up and then we can
carry on writing forms with HTML5, safe in the knowledge all users will see what
they need to use our form (except those two people using IE6 with JavaScript turned
off—you know who you are—now pack it in!).

http://afarkas.github.com/webshim/demos/
http://afarkas.github.com/webshim/demos/

Chapter 8

[259]

First download Webshims Lib (http://github.com/aFarkas/webshim/downloads)
and extract the package. Now copy the js-webshim folder to a relevant section of
your web page. For simplicity, for this example I've copied it into the website root.

Now add the following code into the <head> section of your page:

<script src="js/jquery-1.7.1.js"></script>
<script src="js-webshim/minified/extras/modernizr-
 custom.js"></script>
<script src="js-webshim/minified/polyfiller.js"></script>
<script>
 //load all defined
 $.webshims.polyfill();
</script>

Let's go through this a section at a time. First I've linked to a local copy of the jQuery
library (get the latest version at www.jquery.com):

<script src="js/jquery-1.7.1.js"></script>

Next, I'm adding the versions of Modernizr and the polyfiller JavaScript files that are
within Webshims Lib:

<script src="js-webshim/minified/extras/modernizr-custom.js"></script>
<script src="js-webshim/minified/polyfiller.js"></script>

Finally, I'm telling the script to load all needed polyfills:

<script>
 //load all defined
 $.webshims.polyfill();
</script>

And that's all there is to it. Now, missing functionality is automatically added by the
relevant polyfill. Excellent!

Styling HTML5 forms with CSS3
Our form is now fully functional across all browsers and whilst we've got some very
basic styling, you and I both know, with CSS3 we can do so much better. Let's apply
some of the techniques we've already learned and used to spice up our form a little.
So far, the following are all the form specific styles we have:

#redemption {
 width: 100%;
 font-family: 'ColaborateThinRegular';
 font-weight: 400;

http://github.com/aFarkas/webshim/downloads

Conquer Forms with HTML5 and CSS3

[260]

}
#redemption hgroup {
 margin-bottom: 20px;
}
#redemption div {
 width: 100%;
 margin-bottom: 15px;
 float: left;
}
#redemption span#range {
 float: left;
 font-size: 3em;
 width: 100%;
 color: red;
 clear: both;
 text-align: center;
}
#howYouRateThis,#yearOfCrime {
 text-align: right;
}
#redemption legend {
 font-style: italic;
 color: #434242;
 font-size: 0.8em;
 margin-bottom: 20px;
 float: left;
 width: 100%;
}
#redemption fieldset {
 border: 1px dotted #cccccc;
 padding: 2%;
 margin-bottom: 20px;
}
#redemption label {
 width: 40%;
 float: left;
}
#redemption input {
 height: 20px;
 font-size: 1em;
 width: 40%;
 float: right;
}
#redemption textarea {

Chapter 8

[261]

 height: 60px;
 font-size: 1em;
 width: 40%;
 float: right;
}
#redemption input#submit {
 text-decoration: none;
 height: 34px;
 font: 1.25em /* 36px ÷ 16 */ 'BebasNeueRegular';
 background-color: #b01c20;
 border-radius: 8px;
 color: white;
 float: right;
 margin-bottom: 10px;
 background: linear-gradient(top, rgb(241,92,96) 0%, rgb(176,28,32)
 100%);
 margin-top: 10px;
 box-shadow: 5px 5px 5px hsla(0, 0%, 26.6667%, 0.8);
 text-shadow: 0px 1px black;
 border: 1px solid #bfbfbf;
}
.polyfill-important .input-range,.polyfill-important .step-controls {
 float: right;
}
.polyfill-important .step-controls {
 margin-right: -20px!important;
}

The only point worthy of note here is that the final two styles are only relevant when
some of the polyfills are loaded.

So, first off, I want to make each fieldset stand out a little more with a subtle
gradient background. The following is the amended CSS for the fieldset:

#redemption fieldset {
 border: 1px dotted #cccccc;
 padding: 2%;
 margin-bottom: 20px;
 background: #ffffff;
 background: linear-gradient(top, #ffffff 77%,#f2f2f2 100%);
 border-radius: 4px;
 box-shadow: 2px 2px 5px hsla(0, 0%, 16.6667%, 0.3);
}

Conquer Forms with HTML5 and CSS3

[262]

Aside from the border-radius, and background gradient, the only other thing we
have done is add a subtle box-shadow declaration.

As in many of the previous examples, I've omitted vendor-prefixed versions of
the CSS3 declarations (background gradient, border-radius, and box-shadow in
this case).

The following screenshot is the output shown in Chrome:

Mixing color values
Throughout the examples you can see that I've mixed and matched
how colors have been defined. In some instances I'm using values like
red whilst I've also used HEX, RGB and HSL values too. In supporting
browsers there is no penalty for doing so. In a production site however,
you may choose to stick to one or two formats for consistency.

Chapter 8

[263]

So far, so good. But those text input fields are still looking a little drab. Let's add a
sprinkling of CSS3 there too using the following code:

input, textarea, select {
 border: 1px solid #bfbfbf;
 padding: 0.2em;
 font-size: 1.1em;
 line-height: 1.2em;
 background: #ffffff;
 background: linear-gradient(top, #ffffff 0%,#ededed 8%,#ffffff
 100%);
 border-radius: 4px;
 box-shadow: 2px 2px 5px hsla(0, 0%, 16.6667%, 0.1);
}

Again, we've got a background gradient there, a slight border-radius, and a
subtle box-shadow. The following screenshot shows how it looks in Chrome:

Conquer Forms with HTML5 and CSS3

[264]

I'm happy with that…Oh, hold on. Take a look at the slider at the bottom. That's
not what I want. I don't want those rules to affect the range slider so I'll amend my
selector and use one of the new CSS3 selectors to sort things out:

input:not([type="range"]), textarea, select{
 /* the styles */
}

I've used the :not pseudo selector to specify that I don't want the rule to apply to
inputs with the attribute type="range". Let's take another look in Chrome:

Excellent! That's what I was gunning for and CSS3 has made it easy to not only add
the relevant styles, but also to prevent adding them to elements on which they're
not wanted.

Chapter 8

[265]

Form-specific CSS3 pseudo class selectors
Alongside all the fun CSS3 tools we already know about, there are also a few
form-specific pseudo selectors:

•	 input:required: for required fields
•	 input:focus:invalid: for focused fields that have an invalid value
•	 input:focus:valid: for focused fields that have a valid value

So, let's use these to make three additional style rules as shown in the following
code examples:

input:required {
 border: 1px solid rgba(253, 8, 8, 0.29);	
}
input:focus:invalid {
 background: url('../img/cross.png') no-repeat right;
 padding-right: 3px;
}
input:focus:valid {
 background: url('../img/tick.png') no-repeat right;
 padding-right: 3px;
}

The first is a subtle border for required fields. The second adds a cross for when an
incorrect value has been included as the user types and the final rule adds a green
tick when a correct value has been entered.

The following screenshot shows how that works in the browser (Firefox v9) on
page load:

Conquer Forms with HTML5 and CSS3

[266]

Now, if we focus (click into) on one of the required input fields, a red cross appears
(as we haven't yet entered a valid value):

If we go ahead and enter a valid value, the red cross image swaps out for our
green tick:

Using these new CSS3 pseudo class selectors makes for a nice, easy to implement,
layer of enhancement that adds to the overall user experience when filling in
the forms.

Chapter 8

[267]

Summary
In this chapter, we have learned how to use a host of new HTML5 form attributes.
They enable us to make forms more usable than ever before and the data they
capture more relevant. Furthermore, we can future proof this new markup by
using JavaScript feature detection and conditional loading of JavaScript polyfill
scripts so that all users experience similar form features, regardless of their
browsers capability.

We're nearing the end of our Responsive HTML5 and CSS3 journey. We've covered
a lot of theory alongside our practical 'And the winner isn't' example website.
However, implementing responsive designs in the real world often presents further
challenges. How to handle a mass of navigation links on a small screen? How to only
load additional files for the browsers that need them? In the final chapter we will be
looking at some of these common issues (and their solutions) when implementing
responsive designs built with HTML5 and CSS3. We'll also revisit how best to deal
with some specific shortcomings of common older browsers.

Solving Cross-browser
Responsive Challenges

In this final chapter, we will learn:

•	 The fundamental difference between progressive enhancement and
graceful degradation

•	 How to make older versions of Internet Explorer responsive
•	 How to use Modernizr to conditionally load CSS files
•	 How to use Modernizr to conditionally load JavaScript polyfills
•	 How to change long lists of navigation to select menus on small viewports
•	 How to provide images for high resolution (retina) displays

Before we get to the meat of this final chapter, let's recap where we are and what
we know.

Mobile usage is exploding. Consequently users view websites with a variety of
viewports (different sizes and orientations) and with varying bandwidths. For
the foreseeable future, we need to design and build our websites starting with
the essential content and layering on features and enhancements progressively.
Furthermore, due to the bandwidth considerations, the code base should be as
lean and flexible as possible.

Design-wise, we've embraced all three legs of the Ethan Marcotte responsive design
methodology. CSS3's media queries (covered in Chapter 2, Media Queries: Supporting
Differing Viewports) are used to create design breakpoints where the layout can adapt
dramatically to the viewport. Then flexible images and media alongside a fluid grid
(covered in Chapter 3, Embracing Fluid Layouts) to provide a smooth flex between
these media query breakpoints. The result is a design that not only works for today's
popular viewports but for the future's too.

Solving Cross-browser Responsive Challenges

[270]

To keep our code base lean, in Chapter 4, HTML5 for Responsive Designs, we
switched our markup to HTML5. It provides economies, more semantic code, and
makes features such as offline viewing possible. Going further, we added some
WAI-ARIA accessibility to our code, providing additional aids for screen readers
and assistive technologies.

In Chapter 5, CSS3: Selectors, Typography, and Color Modes and Chapter 6, Stunning
Aesthetics with CSS3, we looked at the incredible power and flexibility of CSS3,
learning about new RGBA and HSLA color modes and how common design
flourishes such as box-shadows, text-shadows, background gradients, and so on can
be achieved without images, using CSS3 alone. In addition, the powerful selectors of
CSS3 have allowed us to select anything we need from the DOM, a level of selection
power that previously required JavaScript. Yet CSS3 hasn't just given us the ability
to adapt the design and drastically lower the amount of bandwidth required to
view our site. It has also added functionality we could never enjoy before without
employing Flash of JavaScript: custom typography (Chapter 5, CSS3: Selectors,
Typography, and Color Modes) and beautiful smooth transitions (Chapter 7, CSS3
Transitions, Transformations, and Animations) between different visual states.
Keeping one eye on the future, we also glimpsed at sophisticated features
such as CSS3 3D transformations.

Finally, in the last chapter, we tackled the humdrum task of form building, relishing
the opportunity to handle the heavy work of form validation and form UI element
creation using HTML5 markup. Importantly, we also added a JavaScript fall back to
conditionally enhance the experience for older browsers such as Internet Explorer
versions 6, 7, and 8.

Throughout this book we've built up a fairly simple responsive website in HTML
and CSS3 called And The Winner Isn't…. You can visit this site in your browser at
http://www.andthewinnerisnt.com.

http://www.andthewinnerisnt.com
http://www.andthewinnerisnt.com

Chapter 9

[271]

The following screenshot shows how the front page currently looks on an iPhone:

Solving Cross-browser Responsive Challenges

[272]

The following screenshot shows how the front page looks on an iPad:

The following screenshot shows how it looks in the Android browser (emulator):

Chapter 9

[273]

The following screenshot shows how it looks in a modern desktop browser (Google
Chrome v16):

Finally, the following screenshot shows how it looks presently in Internet Explorer 8:

Oh Momma! Pass the service revolver…

Solving Cross-browser Responsive Challenges

[274]

Looking at the site in Internet Explorer 8, which doesn't understand HTML5
elements, such as <aside>, <header>, <nav>, and <footer>, by default brings
us to the thrust of this chapter—solving cross-browser responsive challenges.

Progressive enhancement versus
graceful degradation
You're probably aware of the phrases "progressive enhancement" and "graceful
degradation". These two concepts are methodologies for dealing with wide and
varied browser support and spark fierce debate within the web community. Whilst
initially they may seem inter-changeable terms, they are actually fundamentally
opposed. Here's my take…

Graceful degradation means creating a site for modern browsers and then ensuring
that certain older browsers are afforded a usable experience. Features degrade in
older browsers and there is usually a cut-off point in which the oldest browsers
aren't supported. There are also occasions where users are merely warned that there
is a problem with their browser and workarounds are suggested (for example, "your
browser is a joke—get a new one!")

Progressive enhancement is the reversal of graceful degradation. Progressive
enhancement begins with markup that adheres to web standards, meaning it will be
usable by all browsers (irrespective of technologies such as JavaScript and even CSS).
The experience is then progressively enhanced for more capable browsers through
CSS styling and eventually JavaScript (if required).

There are hundreds of articles discussing the merits and failures of each approach.
For starters, I'd take a look at this piece on the Opera developer's site: http://dev.
opera.com/articles/view/graceful-degradation-progressive-enhancement/
and this excellent piece by Aaron Gustafson: http://www.alistapart.com/
articles/understandingprogressiveenhancement.

Reality
Currently, progressive enhancement is largely considered to be the best practice way
of developing a website. However, the cold hard truth is that whilst I fundamentally
favor and build sites using the progressive enhancement methodology, there are
plenty of instances where I am arguably doing things in a graceful degradation
manner. How so?

http://dev.opera.com/articles/view/graceful-degradation-progressive-enhancement/
http://dev.opera.com/articles/view/graceful-degradation-progressive-enhancement/

Chapter 9

[275]

The www.andthewinnerisnt.com site we have just built up uses HTML5 as its
code base. Older browsers such as Internet Explorer versions 6, 7, and 8 (from this
point on, also referred to as "old IE") were built and released before HTML5 (which
you'll remember isn't a ratified standard despite its growing ubiquity) and so don't
understand what <aside>, <section>, and <footer> elements are for. So, from a
purist sense it could be argued I shouldn't be using HTML5 elements. By adding a
piece of JavaScript to fix this basic functionality problem—is this really progressive
enhancement?

Despite this, unless there is a compelling reason not to, I always opt to use HTML5
over HTML 4.01. The reality is that for the work I do on a week-in week-out basis,
HTML5 offers more benefits than shortcomings. So, if using HTML5 (and I certainly
recommend you do), give all devices the best shot at handling it natively by coding
standards compliant HTML code (use the HTML5 validator at http://validator.
nu/ or at http://validator.w3.org/ to eliminate any errors).

Regardless, there will inevitably be a point in which you choose (or are forced) to
make some portion of the enhanced functionality afforded by modern browsers,
possible in ailing versions of Internet Explorer. Maybe you want border-radius to
work in old IE, for example. However, before you go there, I'm going to bend your
ear just a little more…

Should you fix old versions of Internet
Explorer?
At this point I'd like to re-iterate an earlier point: it's almost certainly possible
to polyfill the majority of HTML5 and CSS3 features for older browsers but the
resulting user experience will be heavily laden with JavaScript and potentially less
usable than it would be without the polyfills. Needless to say, it's important to
consider the performance implications of such a choice. Just because you can, doesn't
mean you should!

Furthermore, even without polyfills (which we shall look at shortly), in my
experience, adding, testing, and configuring IE specific CSS code to make IE6 and IE7
(and to a lesser extent IE8 and IE9) render pages so they look as similar as possible
to a modern standards compliant browser takes at least as much time as visually
enhancing a site for modern browsers—just far less enjoyable! Is that how you or
your client want to spend the allocated development time?

Solving Cross-browser Responsive Challenges

[276]

Statistics (again)
Let's revisit some of the ground we covered in Chapter 1, Getting Started with HTML5,
CSS3, and Responsive Web Design. Whilst conceding that statistics are always open
to interpretation, we noted that from July 2010 to July 2011 global mobile browser
usage (as measured by Global Stats at http://gs.statcounter.com) had risen
(from 2.86 percent to 7.02 percent) whilst usage of Internet Explorer 7 had dropped
(to 5.45 percent). For the last month of 2011, the stats are even more revealing:
Internet Explorer 7 was just 4 percent with Internet Explorer 6 enjoying just 1.78
percent. Mobile browser usage meanwhile had increased to 8.04 percent.

An even more interesting fact is that for December 2011, a single modern browser,
Google's Chrome (I'm including both, versions 15 and 16), accounted for 25.7 percent
of global browser usage; almost the same amount accounted for by versions 6,7, and
8 of Internet Explorer (27.9 percent). Once you then factor the numbers for other
modern browsers such as Safari (4.3 percent, excluding the iOS version) and all
versions of Firefox (21.01 percent), and then the relevant mobile browsers, it's
not difficult to appreciate that developing and enhancing the user experience for
modern browsers, rather than patching up the holes in old ones makes more sense.
At least to me!

The bottom line: usage of ailing versions of Internet Explorer (6, 7, and 8) is
diminishing whilst usage of modern browsers (both desktop and mobile) is
increasing.

Personal choice
Currently, my personal stance for new website builds is that I ensure tight visuals
in the current version of Internet Explorer (v9 at the time of writing) and the nearest
prior version (for example, IE8). Tweaking layout and style issues in older versions is
then negotiable due to the additional time needed.

That doesn't mean I simply disregard any fundamental usability problems with
versions such as IE7, I merely limit development time to ensure that basic layout and
functionality works, and disregard minor alignment issues and visual enhancements
that aren't supported within the browser such as background gradients, rounded
corners, box-shadows, and so on. These things don't affect usability; for the most part
they are merely progressive enhancements that I wouldn't expect (and nor should
anyone else!) to see on aging browsers.

Chapter 9

[277]

Testing sites across multiple browsers
Typically, standards compliant browsers, such as Chrome, Safari, and
Firefox, render HTML5 and CSS3 based web pages pretty similarly. At
present, the majority of smart phones (those based on Android and iOS),
like their desktop Safari and Chrome counterparts, use WebKit as their
base and also render pages as you would expect. However, the different
versions of Internet Explorer are entirely different and there'll no doubt
come a point where you'll need to check your design there too (unless it's
your default browser in which case you have my sympathy). I usually
use IE Tester (http://www.my-debugbar.com/wiki/IETester/
HomePage)—a free utility to run multiple versions of Internet Explorer
on a single machine. However, there are plenty of alternatives and this
feature on Smashing Magazine gives a good overview of some common
choices:
http://www.smashingmagazine.com/2011/08/07/a-dozen-
cross-browser-testing-tools/

To illustrate this approach, after looking at http://www.andthewinnerisnt.
com in IE8, it's obvious we've got some fundamental work to do, merely making
it functional. We're going to use a great JavaScript tool called Modernizr and a
polyfill to patch things up for old IE. I'm not sure that IE deserves it after all the pain
it causes but that's just the kind of guy I am. However, before we get to that, let's
understand Modernizr a little more.

Modernizr—the frontend developer's
Swiss army knife
The web community's ability to figure out the many and varied issues of cross
browser compatibility and create solutions for mere mortals like myself never ceases
to amaze and delight me. Modernizr was mentioned briefly in Chapter 4, HTML5 for
Responsive Designs and again in the last chapter. To reiterate, Modernizr is an open
source JavaScript library that feature tests a browser's capabilities. Fauk Ateş wrote
the first version, and the project now also includes Alex Sexton and the incredibly
talented Paul Irish as the lead developer. It's a tool of choice for a few companies you
may have heard of—Twitter, Microsoft, and Google. I mention this not merely to
blow smoke up the Modernizr team (although they certainly deserve it) but more to
illustrate that this isn't merely today's great piece of JavaScript. Put bluntly, it's a tool
that is worth understanding.

http://www.my-debugbar.com/wiki/IETester/HomePage
http://www.my-debugbar.com/wiki/IETester/HomePage
http://www.andthewinnerisnt.com

Solving Cross-browser Responsive Challenges

[278]

So what does it actually do? How does it enable us to both polyfill older browsers
and progressively enhance the user experience for newer ones and how do we make
it do what we need? Read on grasshopper...

In terms of actions, Modernizr does little, by default, other than add Remy Sharp's
HTML5 shim (when selected) to enable structural HTML5 elements such as <aside>
and <section> in non-HTML5 capable browsers such as IE 8 and lower versions.
What it does is "feature test" the browser. Consequently, it knows whether said
browser supports various features of HTML5 and CSS3. This then provides the
means to take a different action depending upon that information. The rest is for us
to implement. So, let's add Moderniz to our pages and make a start.

First, download Modernizr (http://www.modernizr.com).

Which version of Modernizr—development or production?
If you're interested in how it works, grab the development version of
Modernizr as each option/test is documented. However, using the
production option allows you to select only the tests that are relevant
to the site or web application you are building, keeping the file nice
and lean.

http://www.modernizr.com

Chapter 9

[279]

Now, save the file to a suitable location (as before I've used a js folder in the root).
And then call the file in <head> of your page:

<head>
<meta charset=utf-8>
<meta name="viewport" content="width=device-width,initial-
scale=1.0,maximum-scale=1" />
<title>And the winner isn't…</title>
<link href="css/main.css" rel="stylesheet" />
<script src="js/modernizr.js"></script>
</head>

With Modernizr added, when viewing the source code of a page in Firebug or
similar, it shows a variety of different classes added to the HTML tag. Here's an
example from Firefox v9.01:

<html class=" js flexbox geolocation postmessage indexeddb history
websockets rgba hsla multiplebgs backgroundsize borderimage
borderradius boxshadow textshadow opacity cssanimations csscolumns
cssgradients no-cssreflections csstransforms no-csstransforms3d
csstransitions fontface generatedcontent video audio localstorage
sessionstorage applicationcache" lang="en">

This is great. It tells us, on a browser-by-browser basis, what features it has tested
and which features the browser does or doesn't support (where there is no support
for a feature, it prefixes the feature with no-). This lets us do two major things—fix
styling issues on a feature-by-feature basis in our CSS files and also conditionally
load additional CSS or JS files only when needed.

Fix styling issues with Modernizr
Our responsive And the winner isn't… site is presenting the perfect opportunity to fix
a problem with Modernizr. Whilst the Quiz page (http://www.andthewinnerisnt.
com/3Dquiz.html) works fine in browsers (such as Safari and Chrome) that support
3D transforms it's just a simple hover effect in browsers that don't. Currently,
regardless of whether a browser can render the 3D transforms or not, we have a note
telling people: This page relies on 3D transforms. If the posters don't flip on hover,
try viewing in Safari or Chrome.

But thanks to Modernizr's additional classes, we now have a means of only showing
a relevant note if their browser doesn't have the 3D transform feature.

.note {
 display: none;

http://www.andthewinnerisnt.com/3Dquiz.html
http://apple.com/safari
http://google.com/chrome
http://google.com/chrome

Solving Cross-browser Responsive Challenges

[280]

}
.no-csstransforms3d .note {
 display: block;
}

Breaking that down, first we set the CSS to not show the note by default:

.note {
 display: none;
}

This means browsers that have the CSS 3D Transform feature (Google Chrome 16 for
example) won't see the note (see the following screenshot):

Then the second rule uses the additional class added by Modernizr to show the note
for browsers that don't have the 3D transforms feature:

.no-csstransforms3d .note {
 display: block;
}

Chapter 9

[281]

The following screenshot shows the same page in Firefox 9:

Modernizr allows us to stop thinking in terms of browsers and think in terms
of features.

Solving Cross-browser Responsive Challenges

[282]

Modernizr adds HTML5 element support for
old IE
As I've chosen a custom production version of Modernizr, that includes the HTML5
shim, refreshing the page in Internet Explorer 8 reveals a web page (as shown in the
following screenshot) that looks a whole lot better than it did before:

I didn't need to do anything more. Because Modernizr has enabled HTML5
structural elements in old IE many standard CSS styles are now understood
and the page renders as it should.

For my money, that is perfectly usable. If you hadn't seen the same site in a modern
browser you wouldn't necessarily know anything was different. However, due to
IE8's lack of support for CSS3, we know there are some obvious visual shortcomings
compared to a modern browser; there are no alternate colors in the navigation
links (if needed we could easily fix this by adding an extra class to odd navigation
links), no rounded corners on the button, no text or box shadows and perhaps
more importantly, although our fluid grid flexes, a lack of CSS3 support means no
media query support. No media queries—no significant layout changes at differing
viewports in Internet Explorer 6, 7, or 8.

Chapter 9

[283]

Although I don't consider this layout "broken" in any way, a tool such as Modernizr
does give us the capability to add features that polyfill older browsers as we see
fit. To illustrate, let's add media query min/max-width support so that our design
responds to different viewports in Internet Explorer 6, 7, and 8.

Add min/max media query capability for
Internet Explorer 6, 7, and 8
The polyfill that I generally use to add media query support to older versions of
Internet Explorer only adds support for min/max-width media queries. There are
more substantial media query polyfills that add a greater range of media query
support but for a responsive design, Respond.js by Scott Jehl is simple to use, fast,
and has always served me well.

Respond.js (https://github.com/scottjehl/Respond) can actually be used
without Modernizr—just add it to the page in question, and as the author Scott Jehl
himself says, "Crack open Internet Explorer and pump fists in delight".

So, before we integrate Respond.js with Modernizer, let's do just that. Drop Respond.
js straight into our page (just add it after the Modernizr file we already added) and
check it does what we want for IE. To do this, download the file, save it in a suitable
location, and link to it in the <head> section:

<head>
<meta charset=utf-8>
<meta name="viewport" content="width=device-width,initial-
scale=1.0,maximum-scale=1" />
<title>And the winner isn't…</title>
<link href="css/main.css" rel="stylesheet" />
<script src="js/modernizr.js"></script>
<script src="js/respond.min.js"></script>
</head>

https://github.com/scottjehl/Respond
https://github.com/scottjehl/Respond

Solving Cross-browser Responsive Challenges

[284]

Now, once we load the page in Internet Explorer 8 and resize the browser window,
we get our responsive design back (see the following screenshot):

Great, we've added a polyfill that sorts out min- and max-width media queries in
Internet Explorer but here's the rub: this thing is now being loaded for every browser
that loads the page—whether they need it or not. One solution would be to stick the
script link in an IE conditional comment like the following:

<!--[if lte IE 8]>
 <script src="js/respond.min.js"/></script>
<![endif]-->

I'm sure you've come across conditional comments before. They are a simple way
of loading CSS or JS files (or even content) that only the relevant version of Internet
Explorer will use. All other browsers will see the code as a comment and ignore it.

In this example, our conditional comment says, "If you are less than or equal to (the
lte part) Internet Explorer 8, (the IE 8 part) do this".

Chapter 9

[285]

All about conditional comments
Conditional comments are falling out of favor compared with feature
detection but if you'd like to know more, read all about them at the
following URL:
http://msdn.microsoft.com/en-us/library/
ms537512%28v=vs.85%29.aspx

That will work fine. But do we really want to litter our markup with IE specific
conditional comments? And what about polyfills for other browsers? This is where
Modernizr steps up to the plate.

Conditional loading with Modernizr
A big pull of Modernizr when trying to keep websites and web applications as lean
as possible is that it can load resources (both CSS and JS files) conditionally. So,
rather than use a "scatter gun" approach and laden our pages with every polyfill a
user might need (regardless of whether they actually need them or not), we only load
the polyfills a user actually needs. This keeps our pages and load times as lean as they
can be for each and every user.

So with Modernizr already added to the head of our pages, let's use it to
conditionally load our Respond.js polyfill only if the browser in question doesn't
natively understand CSS3 media queries (for example IE versions 6, 7, and 8).

Modernizr includes a JavaScript micro-library called YepNope.js (http://
yepnopejs.com/). It uses a simple format:

Modernizr.load({
 test: Modernizr.mq('only all'),
 nope: 'js/respond.min.js'
});

First up is the call to the resource loading part of Modernizr:

Modernizr.load({

Within this is the test itself and a number of possible actions based on the result of
that test. In this example, we have asked if the browser understands a media query:

 test: Modernizr.mq('only all'),

If not, the resource should load our respond.min.js file:

 nope: 'js/respond.min.js'

http://yepnopejs.com/

Solving Cross-browser Responsive Challenges

[286]

Here only all is the equivalent of "do you understand media queries?" Old IE will
always fail the test, resulting in nope and therefore load the relevant resource. This
enables respond.min.js to only be loaded when needed.

We could also opt to load additional files at the same time:

Modernizr.load({
 test: Modernizr.mq('only all'),
 nope: ['js/respond.min.js', 'css/extra.css']
});

This example uses an array to add the respond.min.js file and a CSS file called
extra.css. You may opt to load CSS this way to maintain separate styles that are
only needed in the presence or absence of certain features. It's worth remembering
that it's also possible to load different resources based on different outcomes:

Modernizr.load({
 test: Modernizr.mq('only all'),
 yep: 'js/pass.js',
 nope: 'js/respond.min.js'['fail-polyfill.js', 'fail.css'],
 both: 'js/for-all.js'
});

Here, we load one file if the browser passes, another two (in the array) if it fails and a
final file if it passes or fails.

The conditional loading code tests can be written in another separate JavaScript file.
In this instance, I have called mine the conditional.js file and saved it in the js
folder, alongside modernizr.js and respond.min.js. So, the <head> section now
looks as follows:

<head>
<meta charset=utf-8>
<meta name="viewport" content="width=device-width,initial-
scale=1.0,maximum-scale=1" />
<title>And the winner isn't…</title>
<link href="css/main.css" rel="stylesheet" />
<script src="js/modernizr.js"></script>
<script src="js/conditional.js"></script>
</head>

Note that I've removed respond.min.js from the head as it's now loaded in
conditionally as and when needed.

More documentation on how to conditionally load resources with
Modernizr can be found at http://www.modernizr.com/
docs/#load

Chapter 9

[287]

Get your polyfills here
Remember, there's a great repository (pun intended) of useful polyfills at
the following Github location:
https://github.com/Modernizr/Modernizr/wiki/HTML5-
Cross-browser-Polyfills

Changing navigation links to a drop
menu (conditionally)
A common issue with responsive designs is that if you have lots of navigation
links on a page they can take up a sizeable portion of your screen real estate in
smaller viewports.

For example, with only six page links, this is how any page currently loads for the
And the winner isn't… website on a smaller viewport:

Solving Cross-browser Responsive Challenges

[288]

I'd like to swap those links out for a drop menu but only if a browser is below a
certain viewport width. Now, you can roll your own piece of JavaScript to convert
the menu items to a drop menu. The venerable Chris Coyier has documented how
this can be achieved (http://css-tricks.com/convert-menu-to-dropdown/).
Alternatively, there are a few pre-written scripts that do this for you. For brevity and
ease, I have opted to use one such script. The following screenshot shows what the
drop menu does to our navigation links on smaller viewports:

http://css-tricks.com/convert-menu-to-dropdown/
http://css-tricks.com/convert-menu-to-dropdown/

Chapter 9

[289]

Clicking on the Select a page button brings up the navigation, as shown in the
following screenshot:

Solving Cross-browser Responsive Challenges

[290]

A perfect poster child for progressive enhancement—it isn't essential functionality
but it gets more content "above the fold" for users with smaller viewports. So, let's
get on and implement it. First off, download the Responsive Menu script (https://
github.com/mattkersley/Responsive-Menu). As before, save the relevant file
(jquery.mobilemenu.js) to the js folder. There is just one thing we need to do
first in the markup, and that's give our navigation links in each page an id:

<nav role="navigation">
 <ul id="mainNav">
 Why?
 Offline
 Redemption
 Videos/clips
 Quotes
 Quiz

</nav>

We could live without doing this but jQuery selectors work much faster with a
specific id to latch onto.

Now, in the conditional.js file, we'll add the following code:

Modernizr.load([
 {
 test: Modernizr.mq('only all'),
 nope: 'js/respond.min.js'
 },
 {
 // load the menu convertor if max-width is 600px;
 test: Modernizr.mq('only screen and (max-width: 600px)'),
 yep : ['js/jquery-1.7.1.js', 'js/jquery.mobilemenu.js'],
 complete : function () {
 // Run this after everything in this group has downloaded
 // and executed, as well everything in all previous groups
 $(document).ready(function(){

 	 $('#mainNav').mobileMenu({
 	 switchWidth: 600, //width (in px to
switch at)
 	 topOptionText: 'Select a page', //first option text
 	 indentString: ' ' //string for indenting
nested items
 	 });
 });

 }
 }
]);

https://github.com/mattkersley/Responsive-Menu

Chapter 9

[291]

After the prior conditional load that adds Respond.js for old IE, we've added
another test:

test: Modernizr.mq('only screen and (max-width: 600px)'),

The previous test asks, does this viewport understand media queries and if it does, is
the maximum width of the viewport 600px? If it does...

 yep : ['js/jquery-1.7.1.js', 'js/jquery.mobilemenu.js'],

The previous line loads both the jQuery library and the Responsive Menu file:

complete : function () {
…more code…

The complete section effectively says, once any files are downloaded and executed,
run the following:

$(document).ready(function(){

 	 $('#mainNav').mobileMenu({
 	 switchWidth: 600, //width (in px to
switch at)
 	 topOptionText: 'Select a page', //first option text
 	 indentString: ' ' //string for indenting
nested items
 	 });
});

These are the variables for the Responsive Menu script. Most importantly, the first
option defines what viewport width I want the existing menu to be converted to a
drop down (I've set it to 600px).

Again, using Modernizr to perform this task removes extraneous code for users that
don't need it and allows progressive enhancement of the user experience for those
that do.

For website designers, especially those unfamiliar with JavaScript, plunging into
Modernizr for the first time can be daunting. There's certainly a lot to take in but
hopefully this short primer will illustrate some obvious advantages that can be
utilized in any future responsive project you might work on.

Solving Cross-browser Responsive Challenges

[292]

High resolution devices (the future)
Devices and their capabilities are changing all the time. Indeed, it isn't just different
viewport sizes we must contend with. Already, we need to consider viewports that
have higher resolution displays. The iPhone 4 was the first widely used device to
implement a high-resolution display. Its screen is 960 by 640 pixel resolution at 326
pixels per inch, double the resolution of the prior version (iPhone 3GS) and double
the pixel per inch density of laptops such as the 2011 15" MacBook Pro. Expect
many more devices from tablets and laptops to desktop screens to follow suit.
Thankfully, our responsive tools already provide us with the capabilities to support
enhancements for these devices.

Let's suppose we wanted to load a higher resolution version of a site logo for users
of high-resolution displays. It's a situation I encountered when performing a recent
redesign of my own website at http://www.benfrain.com. Here is the markup for
my logo area:

<div class="logo">

</div>

And here is the CSS rule that loads the logo:

 #container header[role="banner"] .logo a {
 background-image: url("../img/logo2.png");
 background-repeat: no-repeat;
 background-size: contain;
 display: block;
 height: 7em;
 margin-top: 10px;
}

http://www.benfrain.com
http://www.benfrain.com

Chapter 9

[293]

Initially, the logo looked like the one shown in the following screenshot:

Perfectly functional but I wanted the logo as crisp as possible on higher resolution
displays. So, I made two further versions of my logo (one for the default state and
one for the hover state) at double the size of the existing logo and named them
logo2@x2.png and logo2Over@x2.png. I then added the following media query in
my CSS:

@media all and (-webkit-min-device-pixel-ratio : 1.5) {
 #container header[role="banner"] .logo a {
 background-image: url("../img/logo2@x2.png");

 }

mailto:logo2@x2.png
mailto:logo2Over@x2.png

Solving Cross-browser Responsive Challenges

[294]

 #container header[role="banner"] .logo a:hover {
 background-image: url("../img/logo2Over@x2.png");
 }
}

The media query targets devices with a minimum device pixel ratio of 1.5. Therefore,
high-resolution displays like those on the iPhone 4 and later come into this category
and render the styles within. You'll notice this rule includes a –webkit- prefix. As
ever, remember relevant prefixes for the devices you need to target.

And now, with high-resolution devices, the higher quality version of the logo is
loaded instead, as shown in the following screnshot:

Chapter 9

[295]

Admittedly, the difference is subtle. It's probably best to look at the differences in the
flesh to appreciate the difference but the more detailed the image, the more likely it
is to appear beautifully crisp on a high resolution display.

There are considerations to using this technique. Larger images equate to larger
file sizes and longer download times so again, just because you can, doesn't mean
you should.

Where supported, Scalable Vector Graphics (SVG) alleviate many of the image
scaling issues that we currently face. As the name suggests, they are designed to
produce images that can display crisply at whatever scale is needed. However,
media queries and SVG don't help with inline photos for high resolution displays.
You'll need to implement JavaScript based solutions in those instances.

Summary
In this chapter, we've considered the fundamental differences between progressive
enhancement and graceful degradation. We've then used a polyfill to make old
IE understand our media queries so that our design responds there too. Finally,
we used Modernizr to conditionally load CSS and JavaScript files based upon any
number of feature tests, thereby allowing us to serve up polyfills and additional or
alternate styles only when a browser lacks the requisite features. Finally, we've taken
a sneak peek at the technologies that are becoming commonplace in the immediate
future and how we can use CSS3 to serve yet further enhancements for the devices
that support them.

At this point, your humble author believes (and hopes) he has related all the
techniques and tools you'll need to start building your next website or web app
responsively.

It's my firm conviction that currently, responsive web designs built with HTML5
and CSS3 represent the best frontend development option for the vast majority of
websites. With only a little modification to our existing workflows, practices, and
techniques they enable us to provide fast, flexible, and maintainable websites that
can look incredible regardless of the viewport used to visit them.

As mobile device usage continues to grow exponentially, and new devices that we
never before contemplated enter the browsing fray, this methodology arguably
provides the surest and most future proof means of building designs that will work
on any device, on any viewport, and render as quickly as possible however those
devices connect to the web.

Index
Symbols
:first-line pseudo-element 159-161
3D transforms 227, 228
1140 CSS Grid

URL 89
<address> element, HTML5 semantic

elements 109
<article> element, HTML5 semantic

elements 105
<aside> element, HTML5 semantic elements

105
<a> tag 102
<audio> tag 126
 element, HTML5 text-level semantics

117
<body> tag 148
#content div 67
<div> tags 24
 element, HTML5 text-level semantics

117
@font-face CSS rule

web fonts, implementing 162-165
@font-face font 166, 167
@font-face method 168
@font-face rule

about 176
used, for sizeable icons 206

#footer div 67
<footer> element, HTML5 semantic

elements 108
<h1> tag 106
<header> element, HTML5 semantic

elements 108
<head> tag 86

<hgroup> element, HTML5 semantic
elements 106

<i> element, HTML5 text-level semantics
117

@import command 41
@keyframes declaration 229
 tag 73
<meta> tag 51
<nav> element, HTML5 semantic elements

105
#navigation div 67
<section> element, HTML5 semantic

elements 104
<video> tag 126
#wrapper div 66, 82

A
adaptive images 84-86
ai-cache 85
Alexander Farkas

URL 258
AList Apart

urL 63
alpha channels 172, 173
Android browser

front page, viewing 272
And The Winner Isn't

URL 270
AND THE WINNER ISN'T text 92
animation-delay property 230
animation-fill-mode property 230
animation-play-state property 230
animation property 233, 234

[298]

ARIA
landmark roles, implementing 120-123
roles, styling 123
URL 121

aspect-ratio 39
audio

adding, HTML5 way 123-125
autocomplete, HTML5 forms 243
autofocus attribute, HTML5 forms 243
autoplay attribute 124
auto-resize page, mobile browsers

stopping 50-52

B
background gradient

about 262, 185
linear background gradients 185-188
radial background gradients 189, 190

background gradient patterns 194, 195
background-gradient property 213
background-image linear-gradient property

28
background images

about 203, 204
position 205
shorthand 205
size 204, 205

background positions
URL 205

background sizing
URL 205

beginning with, substring matching
attribute selector 147

border-radius property 27
box shadows

about 181, 182
inset shadow 182, 183
muliple shadows 184, 185

C
CACHE: section 133
Candidate Recommendation. See CR
Cascading Style Sheets. See CSS
CDN 129
closet-corner 190

closet-side 190
color 40
color-index 40
color input type, HTML5 251
component parts, HTML5 forms 240
conditional comments 285
contain 191
contains an instance of, substring matching

attribute selector 147
Content Delivery Network. See CDN
controls attribute 124
cover 191
CR 36
CSS

about 24
CSS-based design 24

CSS 2.1 25
CSS3

about 24, 25
animations 31
background gradient patterns 194, 195
background-image linear-gradient property

28
border-radius property 27
box shadows 181, 182
button, in same browser 28, 29
button, in same browser (Chrome v16) 27
features 205
for frontend developers 138
headerLeft.png 25
headerRight.png 25
HTML5 forms, styling 259-264
linear-gradient property 28
properties, merging 198-202
property 26
pseudo class selectors, form specific

265, 266
repeating background gradients, creating

192-194
responsive considerations 196-198
rounded corners property 27
sliding doors technique, URL 25
support, in Internet Explorer version 6 138
support, in Internet Explorer version 7 138
support, in Internet Explorer version 8 138
text shadows, creating 176

[299]

transformations 30
used, for designing pages 139
used, for developing pages 139
used, for solving issues 25-28
uses 29, 31

CSS3 2D transforms module
about 216
matrix transform 217
rotate transform 217
scale transform 217
skew transform 217
translate transform 217

CSS3 3D transforms
3D effect, breaking 224-227
about 221, 222

CSS3 animations
@keyframes declaration 229
about 228
and CSS3 transformations, merging

232-235
animation-delay property 230
animation-fill-mode property 230
animation-play-state property 230
components 228
example 231
keyframe declaration 228
keyframe declaration, in animation

property 228
keyframe rule 228
latest developments, URL 232
reusing, on other elements 231

CSS3 attribute selectors
about 146
substring matching 147

CSS3 attribute selectors, substring matching
beginning with 147
contains an instance of 147
ends with 148

CSS3, color formats
about 169
alpha channels 172, 173
fallback color values 172
HSL color 170, 171
RGB color 169, 170

CSS 3D transforms
latest W3C developments, URL 228

CSS3 rule
anatomy 139

CSS3 selectors
about 146
attribute selectors, substring matching 147
structural pseudo-classes 149, 150

CSS3 structural pseudo-classes
:last-child selector 150-152
about 149, 150
negation (:not) selector 158
nth-based rules 155-158
nth-child selectors 154

CSS3 transformations
and CSS3 animations, merging 232-235

CSS3 transitions
about 210, 211
default state 211
fun transitions, for responsive web sites

215
hover state 211
hover state, adding 211
limitations 213
properties 212

CSS3 transitions, properties
different properties, over different periods

of time 213
shorthand property 212, 213
timing functions 214, 215
transition-delay 212
transition-duration 212
transition-property 212
transition-timing-function 212

CSS3, tricks
about 142
CSS3 multiple columns, for responsive

designs 142-144
gap and column divider, adding 144, 145
word wrapping 145, 146

CSS Grid frameworks. See CSS Grid
systems

CSS Grid systems
1140 CSS Grid, URL 89

[300]

about 89
less framework, URL 89
semantic, URL 89
site, building with 90-95
skeleton, URL 89

CSS Transforms Module Level 3
URL 36

CSS universal selector 215
Cufón

URL 161
custom web typography

@font-face CSS rule 161, 162
about 161
web fonts, implementing with @font-face

CSS rule 162-165

D
date and time inputs

about 252
date 252
datetime and datetime-local 254-256
month 253
range 256, 257
time 254
week 253

date input type, HTML5 252
datetime and datetime-local input type,

HTML5 254, 256
device-aspect-ratio 40
device-height 39
device-width 39
Doctype (Document Type Declaration) 22
drop menu

navigation links, changing to 287-291

E
email input type, HTML5 245
Embedded OpenType (EOT) font 161
ems

about 76
used instead of pixels, for typography 75,

76
ends with, substring matching attribute

selector 148
Explorer Developer Toolbar, URL 12
extra.css, CSS file 286

F
Fallback

for older browsers 126
FALLBACK: section 133
farthest-corner 191
farthest-side 191
Filament Group's

Responsive Images, URL 84
Firesizer

URL 12
FitVids plugin

URL, for downloading 129
fixed layout

about 62
context 72-74
formula 63-65
to proportional layout, design amending 63

Flash fallback 126
fluid grids

and media queries, merging 88, 89
fluid images

about 77
max-width property 82, 83
scale, creating with viewport 77-79
specific rules, for specific images 79, 81

fluid layout 59
Font Deck

URL 162
fonts 163
Font Squirrel

URL 162
footerBackground class 203
formula

target ÷ context = result formula 75

G
Golden Ratio

URL 70
Google Chrome v16

front page, viewing 273
graceful degradation 274

versus progressive enhancement 274
grid 40

[301]

H
headerLeft.png 25
headerRight.png 25
height 39
height attribute 128
HEX 176
high-resolution devices 292-295
hover state 211
HSL 170, 171, 176
HTML 4.01 22
HTML 4.01 Doctype 22
HTML5

<a> tag 102
about 22, 97
alternate source files, adding 125
Doctype (Document Type Declaration) 22
economies, for using 101
features 103
markup 102
media, embedding 123
new semantic elements 104
outline algorithm 106
pages writing, procedure 99, 100
polyfill 98
semantic elements 103
structural elements 109-116
tag elements 23, 24
text-level semantics 117
used, for saving time 22
uses 31, 98

HTML5 forms
about 238-240
autocomplete 243
autofocus attribute 243
component parts 240
list attribute 244
placeholder attribute 241
required attribute 241, 242
styling, with CSS3 259-264

HTML5, input types
about 245
color 251
email 245
number 246, 247

pattern 250, 251
search 250
tel 248, 249
url 247, 248

I
IDEs 140
IE Tester

URL 277
image resizing 83, 84
inline elements 117
inset shadow 182, 183
Integrated Development Environments. See

IDEs
Internet Explorer

importance 8, 9
older versions, fixing 275
statistics 276

Internet Explorer 6
CSS3 support 138
fallback color value for 172
max media query capability, adding 283
min media query capability, adding 283

Internet Explorer 7
CSS3 support 138
fallback color value for 172
max media query capability, adding 283
min media query capability, adding 283

Internet Explorer 8
CSS3 support 138
fallback color value for 172
front page, viewing 273
max media query capability, adding 283
min media query capability, adding 283

iPad
front page, viewing 272

iPhone
front page, viewing 271

J
jQuery

URL 12

[302]

K
keyframe declaration

about 228
in animation property 228
keyframe rule 228

L
Lea Verou

CSS3 background patterns, URL 196
Lea Verou's -prefix-free script

URL 176
less framework

URL 89
linear background gradients

about 185-188
syntax 188

linear-gradient property 28
list attribute, HTML5 forms 244

M
manifest file

about 133
pages loading automatically, to offline

manifest 133
matrix transform

about 217-219
for cheats and dunces 220

max media query capability
adding, for Internet Explorer 6 283
adding, for Internet Explorer 7 283
adding, for Internet Explorer 8 283

max-width property 82, 83
media queries

about 35
and fluid grids, merging 88, 89
fixed-width design 42-46
loading, for responsive designs 41
need for, by responsive web design 36
syntax 36-38
testing for 39, 40
used, for altering design 40

media queries, testing for
aspect-ratio 39
color 40
color-index 40

device-aspect-ratio 40
device-height 39
device-width 39
grid 40
height 39
monochrome 40
orientation 39
resolution 40
scan 40
width 39

Microsoft prefix (-ms-) 140
min media query capability

adding, for Internet Explorer 6 283
adding, for Internet Explorer 7 283
adding, for Internet Explorer 8 283

mobile browsers
auto-resize page, stopping 50-52

modernizr
about 99, 277, 278
conditional loading 285, 286
conditional loading, URL 286
custom production version 282
development version 278
Firefox v9.01, example 279
HTML5 element support, adding in old IE

282
max media query capability, adding for

Internet Explorer 6 283-285
max media query capability, adding for

Internet Explorer 7 283-285
max media query capability, adding for

Internet Explorer 8 283-285
min media query capability, adding for

Internet Explorer 6 283-285
min media query capability, adding for

Internet Explorer 7 283-285
min media query capability, adding for

Internet Explorer 8 283-285
production version 278
quiz page, URL 279
styling issues, fixing 279-281
URL 258
URL, for downloading 278

monochrome 40
month input type, HTML5 253
Multi-column Layout Module

URL 145

[303]

N
navigation links

changing, to drop menu 287-291
negation (:not) selector 158
NETWORK: section 133
nth rules 155, 156
number input type, HTML5 246, 247

O
offline.manifest file 134
offline Web applications

about 131
in nut shell 131
manifest file 133
offline.manifest file 132
site, viewing offline 134
troubleshooting 135
URL 135
web pages, working offline 131, 132

onchange attribute 257
only all 286
orientation 39
oscar.png image scale 82
outline algorithm, HTML5 106

P
pattern input type, HTML5 250, 251
phone.css file 40
placeholder attribute, HTML5 forms 241
polyfills

about 32, 98
for non-supporting browsers 258, 259
Webshims Lib, URL for downloading 259

PR 36
progressive enhancement

about 274
reality 274, 275
versus graceful degradation 274

proportional layout
context, setting for 66-72
need, for responsive web design 62, 63

Proposed Recommendation. See PR
PSD 90
pseudo class selectors, form specific

in CSS3 265, 266

input:focus:invalid 265
input:focus:valid 265
input:required 265

pseudo-elements
:first-line pseudo-element 159-161
about 159

Q
queries, media 35
quiz page

URL 279

R
radial background gradients

about 189
breakdown 190, 191
online gradient generators, URL 192
syntax 189
W3C specification, URL 191

radial background gradients, sizes
closet-corner 190
closet-side 190
contain 191
cover 191
farthest-corner 191
farthest-side 191

range input type, HTML5 256, 257
REC 36
required attribute, HTML5 forms 241, 242
required field browser 242
ResizeMe

URL 12
resolution 40
Respond.js tool

URL 41, 283
respond.min.js file 286
responsive design

sizeable icons 206
Responsive Menu script

URL 290
responsive web design

about 41
alternatives 10
content 55
content areas, resetting 57

[304]

content clipping, in smaller viewports 48,
49

content, moving above navigation area 54
defining 10, 11
Ethan Marcotte, list apart article 10
examples 11
fixed-width design 42-46
guidelines, for clients 34
images, working with 46, 47
in nutshell 11
markup, altering 55
media queries, loading for 41
media queries, need for 36
need for 11
proportional layouts, need for 62, 63
techniques, critics 70

responsive web design, examples
online sources 21
viewport testing tools 12, 13

RGB
about 176
color 169, 170

rotate transform 217, 218
rounded corners property, CSS3 27

S
Scalable Vector Graphics. See SVG
scale transform 217
scan 40
screen size

or viewport 13
SDK 51
search input type, HTML5 250
Select a page button 289
semantic

URL 89
semantic elements, HTML5

<address> element 109
<article> element 105
<aside> element 105
<footer> element 108
<header> element 108
<hgroup> element 106
<nav> element 105
<section> element 104
about 103, 104

shorthand property, CSS3 transitions
212, 213

sIFR
URL 161

site
testing, accross multiple browser 277

sizeable icons
for responsive design 206

skeleton
URL 89

skew transform 217, 218
sliding doors technique

URL 25
smart phones

importance 8, 9
Software Development Kit . See SDK
Spackling Paste 98
span element 257
structural pseudo-classes 159
SVG 161, 295

T
tag elements, HTML5 23, 24
target ÷ context = result formula 75
tel input type, HTML5 248, 249
text-level semantics, HTML5

 element 117
 element 117
<i> element 117
about 117
applying, to markup 118, 119

text shadow
em 177, 178
embossed text-shadow effect, creating

180, 181
left and top shadows 180
multiple text shadows 181
pixels 177, 178
preventing 178, 179
rem 177, 178
syntax 176

text-shadow property 176
THESE SHOULD HAVE WON button 47
time input type, HTML5 254
timing functions, CSS3 transitions 214, 215
transform-origin property 221

[305]

transition-delay property 212
transition-duration property 212
transition-property 212
transition-timing-function property 212
translate transform 217
Typekit

URL 162
typography

about 161
ems used, instead of pixels 75, 76

U
url input type, HTML5 247, 248

V
vendor prefixes 139, 140, 176
vh unit (viewport height) 168
video

adding, HTML5 way 123-125
viewport

300 pixels, reducing to 20
about 8
content clipping 48, 49
Explorer Developer Toolbar, URL 12
Firesizer, URL 12
fluid images scale, creating 77-79
jQuery, URL 12
larger than 930 pixels 15
less than 480 pixels, reducing to 20
less than 600 pixel, reducing to 17
less than 720 pixels, reducing to 20
less than 880 pixels 16
or screen size 13
page, viewing 14
ResizeMe, URL 12
site, example 18
site, viewing 15
testing, tools 12
width, design fixing for 53, 54

vm unit (viewport minimum) 168
vw unit (viewport width) 168

W
W3C 24, 100
W3C documentation

on multiple background elements, URL 205
W3C HTML5 validator

URL 23
W3C Recommendation. See REC
WAI-ARIA

used, for adding accessibility to site 119
WD 36
Web Hypertext Application Technology

Working Group. See WHATWG
Webkit (-webkit-) 140
Web Open Font Format (WOFF) 161
Webshims Lib

URL for downloading 259
web typography 161
week input type, HTML5 253
WHATWG 97
width 39
width attribute 128
word wrapping 145, 146
Working Draft. See WD

Y
YepNope.js

URL 285

Thank you for buying
Responsive Web Design with
HTML5 and CSS3

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Dreamweaver CS5.5 Mobile and
Web Development with HTML5,
CSS3, and jQuery
ISBN: 978-1-84969-158-1 Paperback: 284 pages

Harness the cutting edge features of Dreamweaver
for mobile and web development

1.	 Create web pages in Dreamweaver using the
latest technology and approach

2.	 Add multimedia and interactivity to your
websites

3.	 Optimize your websites for a wide range
of platforms and build mobile apps with
Dreamweaver

HTML5 Multimedia Development
Cookbook
ISBN: 978-1-84969-104-8 Paperback: 288 pages

Recipes for practical, real-world HTML5 multimedia-
driven development

1.	 Use HTML5 to enhance JavaScript
functionality. Display videos dynamically and
create movable ads using JQuery

2.	 Set up the canvas environment, process
shapes dynamically and create interactive
visualizations

3.	 Enhance accessibility by testing browser
support, providing alternative site views and
displaying alternate content for non supported
browsers

Please check www.PacktPub.com for information on our titles

HTML5 Mobile Development
Cookbook
ISBN:978-1-84969-196-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows
Phone, and Blackberry

1.	 Solve your cross platform development issues
by implementing device and content adaptation
recipes

2.	 Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile web
development

3.	 Incorporate HTML5-rich media and geo-
location into your mobile websites

jQuery UI 1.8: The User Interface
Library for jQuery
ISBN: 978-1-84951-652-5 Paperback: 424 pages

Build highly interactive web applications with
ready-to-use widgets from the jQuery User
Interface Library

1.	 Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

2.	 A section covering the widget factory including
an in-depth example on how to build a custom
jQuery UI widget

3.	 Updated code with significant changes and
fixes to the previous edition

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with HTML5, CSS3, and Responsive
Web Design
	Why smart phones are important (and old IE isn't)
	Are there times when a responsive design isn't the right choice?
	Defining responsive web design
	Why stop at responsive design?
	Examples of responsive web design
	Get your viewport testing tools here!
	Online sources of inspiration

	HTML5—why it's so good
	Saving time and code with HTML5
	New, semantically meaningful HTML5 tag elements

	CSS3 enables responsive designs and more
	The bottom line—CSS3 won't break anything!
	How can CSS3 solve everyday design problems?

	Look Ma'—no images!
	What else has CSS3 got to offer?

	Can HTML5 and CSS3 work for us today?
	Responsive web designs are not magic bullets
	Educating our clients that websites shouldn't look the same in all browsers
	Summary

	Chapter 2: Media Queries: Supporting Differing Viewports
	You can use media queries today
	Why responsive designs need media queries?
	Media query syntax
	What can media queries test for?
	Using media queries to alter our design
	The best way to load media queries for responsive designs

	Our first responsive design
	Don't panic but our design is fixed-width
	Responsive designs—making images as economical as possible
	Content clipping in smaller viewports

	Stopping modern mobile browsers from auto-resizing the page
	Fixing the design for different viewport widths
	With responsive designs, content should always come first
	Media queries—only part of the solution
	We need a fluid layout

	Summary

	Chapter 3: Embracing Fluid Layouts
	Fixed layouts aren't future proof
	Why proportional layouts are essential for responsive designs
	Amending a design from fixed to proportional layout
	A formula to remember
	Setting a context for proportional elements
	It's always important to remember the context

	Using ems rather than pixels for typography
	Fluid images
	Making images scale with the viewport
	Specific rules for specific images
	Putting the brakes on fluid images
	The incredibly versatile max-width property

	Serving different images for different screen sizes
	Setting up Adaptive Images
	Put background images somewhere else

	Where fluid grids and media queries come together
	CSS Grid systems
	Rapidly building our site with a Grid system

	Summary

	Chapter 4: HTML5 for Responsive Designs
	What parts of HTML5 can we use today?
	Most sites can be written in HTML5
	Polyfills, shims, and Modernizr

	How to write HTML5 pages
	Economies of using HTML5
	A sensible approach to HTML5 markup
	All hail the mighty <a> tag
	Obsolete HTML features

	New semantic elements in HTML5
	The <section> element
	The <nav> element
	The <article> element
	The <aside> element
	The <hgroup> element
	The HTML5 outline algorithm

	The <header> element
	The <footer> element
	The <address> element

	Practical usage of HTML5's structural elements
	What about the main content of the site?

	HTML5 text-level semantics
	The element
	The element
	The <i> element
	Applying text-level semantics to our markup

	Adding accessibility to your site with WAI-ARIA
	ARIA's landmark roles

	Embedding media in HTML5
	Adding video and audio the HTML5 way
	Providing alternate source files
	Fallback for older browsers
	Audio and video tags work almost identically

	Responsive video
	Offline Web applications
	Offline Web applications in a nut shell
	Making web pages work offline
	Understanding the manifest file
	Automatic loading of pages to the offline manifest
	About that version comment
	Viewing the site offline
	Troubleshooting Offline Web applications

	Summary

	Chapter 5: CSS3: Selectors, Typography and, Color Modes
	What CSS3 offers the frontend developer
	CSS3 support in Internet Explorer
versions 6 to 8
	Using CSS3 to design and develop pages in the browser

	Anatomy of a CSS rule
	Vendor prefixes and how to use them
	Quick and useful CSS3 tricks
	CSS3 multiple columns for responsive designs
	Adding a gap and column divider

	Word wrapping

	New CSS3 selectors and how to use them
	CSS3 attribute selectors
	CSS3 substring matching attribute selectors
	A practical, real world example

	CSS3 structural pseudo-classes
	The :last-child selector
	The nth-child selectors
	Understanding what nth rules do
	The negation (:not) selector

	Amendments to pseudo-elements
	Is :first-line handy for responsive designs?

	Custom web typography
	The @font-face CSS rule
	Implementing web fonts with @font-face

	Help—my CSS3 @font-face headings look messy
	A note about custom @font-face typography and responsive designs

	New CSS3 color formats and alpha transparency
	RGB color
	HSL color
	Fallback color values for IE6, IE7, and IE8
	Alpha channels

	Summary

	Chapter 6: Stunning Aesthetics
with CSS3
	Text shadows with CSS3
	HEX, HSL, or RGB color allowed
	Pixels, em, or rem
	Preventing a text shadow
	Left and top shadows

	Creating an embossed text-shadow effect
	Multiple text-shadows

	Box shadows
	Inset shadow
	Multiple shadows

	Background gradients
	Linear background gradients
	Breakdown of linear gradient syntax

	Radial background gradients
	Breakdown of radial gradient syntax

	Repeating gradients

	Background gradient patterns
	Responsive considerations for CSS3
	Bringing CSS3 properties together
	Multiple background images
	Background size
	Background position
	Background shorthand

	More CSS3 features
	Sizeable icons which are perfect for responsive designs
	Summary

	Chapter 7: CSS3 Transitions, Transformations, and Animations
	What CSS3 transitions are and how we can use them
	The properties of a transition
	The transition shorthand property
	Transition different properties over different periods of time
	Understanding timing functions

	Fun transitions for responsive web sites

	CSS3 2D transformations
	What can we transform?
	scale
	translate
	rotate
	skew
	matrix
	transform-origin property

	Dabbling in CSS3 3D transformations
	Breaking down the 3D effect
	3D transformations not ready for prime time

	Animating with CSS3
	Putting CSS3 transformations and animations together

	Summary

	Chapter 8: Conquer Forms with
HTML5 and CSS3
	HTML5 forms
	Understanding the component parts of HTML5 forms
	placeholder
	required
	autofocus
	autocomplete
	list (and the associated datalist element)
	HTML5 input types
	email
	number
	url
	tel
	search
	pattern
	color

	Date and time inputs
	date
	month
	week
	time
	datetime and datetime-local
	range

	How to polyfill non-supporting browsers
	Styling HTML5 forms with CSS3
	Form-specific CSS3 pseudo class selectors

	Summary

	Chapter 9: Solving Cross-browser Responsive Challenges
	Progressive enhancement versus graceful degradation
	Reality

	Should you fix old versions of Internet Explorer?
	Statistics (again)
	Personal choice

	Modernizr—the frontend developer's Swiss army knife
	Fix styling issues with Modernizr
	Modernizr adds HTML5 element support for old IE
	Add min/max media query capability for Internet Explorer 6, 7, and 8
	Conditional loading with Modernizr

	Changing navigation links to a drop menu (conditionally)
	High resolution devices (the future)
	Summary

	Index

